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Abstract

In this thesis I argue that cognitive psychologists can use the combination of

sequential sampling models, Bayesian estimation methods, and model comparison

via predictive accuracy to investigate underlying cognitive processes of perceptual

decision-making. I show that sequential sampling models of simple and choice re-

sponse time allow for researchers to analyze behavioral data and translate them into

the constitute components of processing, such as speed of processing, response cau-

tion, and the time needed for perceptual encoding and overt motor responses. I use

these methods and models to investigate underlying mental processes related to cog-

nitive load, speech perception, and lexical decision-making. I also show that using

different sequential sampling models to analyze the same data can lead researchers

to draw different conclusions about cognitive processes, which serves as a caution

for carelessly using these models. I also present a novel method that researchers can

use to observe cognitive processes unfold online during perceptual decision-making

tasks. I then discuss a promising collaboration emerging between researchers in the

field of mathematical modeling and neuroscience.
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Chapter 1

Methods and Models of

Perceptual Decision Making

There are three stages in scientific

discovery. First, people deny that

it is true, then they deny that it is

important; finally they credit the

wrong person.

Bill Bryson

1
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Cognitive psychologists want to understand how the human brain produces

behavior. But because brains are so complex, a reasonable starting point is to inves-

tigate one of the simpler and more frequent types of human behavior – perceptual

decision-making. Perceptual decisions are choices made about incoming sensory in-

formation. Is that light red or green? Was that a knock at the door? Is that bird

flying towards me?

To study perceptual decisions, researchers approximate real world stimuli

with simpler stimuli, such as small moving dots on a computer screen. Suppose we

want to understand how participants decide whether dots on a screen are coherently

moving to the left or to the right – an experiment called the motion dots task (Ball

& Sekuler, 1982). In this task, some of the dots are coherently moving to the left

or right and some are moving in no coherent direction. Participants need to decide

which direction the coherent dots are moving. Researchers can make the dots bigger,

brighter, or make different proportions of the dots move coherently. They may also

ask participants to respond as fast as they can or as accurately as they can. In either

case, manipulating the stimuli or task demands can have observable effects on how

fast and accurately participants make perceptual decisions.

The motion dots task, or similar perceptual experiments, afford researchers

substantial control over the input to human minds, while the participant’s overt

decisions serve as observable output (i.e., data) – but a cognitive psychologist’s

real goal is to understand what happens between input and output. For example,

Jane and John both take part in the motion dots experiment and John is faster at

responding than Jane. But is he faster because he processes the motion dot stimuli

more quickly? Or does John have a faster motor response allowing him to press
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the response button faster? Perhaps John requires less evidence than Jane to make

his decision. One way to learn about these unobserved cognitive processes is to

define a set of mathematical equations that can produce the observed data. This

set of equations is known as a cognitive model. If the predicted data of the model

captures all the important structure of the observed data, then researchers can draw

meaningful conclusions about unobserved cognitive processes from the parameters

that control the model.

In this thesis I advocate that researchers can investigate the unobserved

processes involved in perceptual decision-making by using a class of mathemati-

cal models known as sequential sampling models. Accurate parameter estimation

is critical if researchers are to use parameters from sequential sampling models to

learn about cognitive processes. I show that Bayesian parameter estimation is a

principled method for applying sequential sampling models to empirical data. A

longstanding issue in cognitive science is comparing competing models of a particu-

lar phenomenon. I show that researchers can choose between competing models by

assessing how well each model predicts future data. As an ancillary goal of this the-

sis I also develop a novel method for learning about unobserved cognitive processes

in perceptual decision-making tasks. For the rest of this chapter I explain what

sequential sampling models are, introduce the fundamentals of Bayesian parameter

estimation, and discuss choosing between competing models by using a model’s pre-

dictive accuracy. The last section of this chapter outlines the specific contributions

of this thesis.
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1.1 Sequential Sampling Models

Since their advent (Stone, 1960), sequential sampling models have been used

by researchers to investigate the unobserved mental processes involved in a range

of perceptual decision-making tasks (e.g., e.g., Ratcliff, 1978; Ratcliff & Rouder,

1998; Wagenmakers, Ratcliff, Gomez, & McKoon, 2008; van Ravenzwaaij, Dutilh, &

Wagenmakers, 2012; Eidels, Donkin, Brown, & Heathcote, 2010; Forstmann et al.,

2008). These models assume a simple cognitive architecture consisting of stimulus

encoding, response selection, and overt response execution. To make a perceptual

decision, people begin with an initial amount of evidence for all response options,

the starting point of evidence accumulation (Figure 1.1). From the starting point,

more evidence is continually sampled from the stimulus, which accumulates at a rate

of drift rate towards the response threshold. When the accumulated evidence crosses

a response threshold this triggers the corresponding overt response.

The quality of evidence sampled from the stimulus governs the drift rate,

which can be interpreted as the speed of information processing. Higher response

thresholds mean that a person needs more evidence to trigger a response, and so,

threshold settings represent how cautious a person is. Starting points and response

thresholds can vary across response options capturing any inherit biases people have.

The time necessary for processes outside of evidence accumulation is the non-decision

time, which includes the time needed for perceptual encoding and overtly executing

a motor response.
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Time

Ev
id
en

ce
Response
Threshold

Starting
Point

Response
Times

Non-
Decision
Time

Figure 1.1: A typical sequential sampling model process. Only one accumulator
is illustrated, but multiple alternative decisions are modeled by multiple racing
accumulators (Usher & McClelland, 2001; S. D. Brown & Heathcote, 2008; S. D.
Brown & Heathcote, 2005) or single accumulators with two boundaries (Ratcliff,
1978; Link & Heath, 1975).

Researchers developed sequential sampling models to account for the com-

plex relationship between accuracy and response times (RTs), which are the ubiq-

uitous dependent measures of perceptual decision-making tasks. Previous models

only accounted for either RTs (Sternberg, 1969) or accuracy (Green & Swets, 1966),

perhaps because of the difficulties of accounting for both measures simultaneously.

Firstly, there is a well-known relationship between accuracy and speed –

the speed-accuracy trade-off – where fast decisions are more likely to be incorrect

than slower decisions (e.g., Wickelgren, 1977; Luce, 1986; Heitz, 2014). Sequential

sampling models offer an intuitive account of how participants trade accuracy for

speed. When response thresholds are high, RTs will be longer and will more likely
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be correct. When thresholds are low, the decision process terminates earlier, which

speeds up RT, but increases the likelihood of responding incorrectly because the

decision is made with less evidence.

Secondly, in experiments with high accuracy, researchers find that error RTs

are slower than correct RTs, but when accuracy is low, error RTs are typically faster

than correct RTs (Luce, 1986). Sequential sampling models account for both slow

errors and fast errors by assuming trial to trial variation in drift rate (Ratcliff, 1978)

and starting point (Laming, 1968), respectively. Emphasizing speed in one condition

of an experiment, causing faster error RTs than correct, and emphasizing accuracy

in another condition, causing slower error RTs than correct, results in a cross-over of

the relative speed of error RT. Assuming variability in both drift rate and starting

point (Ratcliff & Rouder, 1998) accounts for this cross-over effect.

Finally, accuracy and RTs are on radically different scales (Ratcliff & McK-

oon, 2008), where accuracy rates are bound between 0 and 1 and RTs are bound

between 0 and infinity. As accuracy increases its variance decreases and as RT in-

creases its variance increases. Despite these differences in scale, sequential sampling

models can adequately predict the accuracy rates and RTs observed in perceptual

decision-making tasks across a range of paradigms. Given the reliable predictions

of sequential sampling models, researchers can inspect the model parameters, which

represent the underlying constituent components of processing involved in perceptual

decision-making. Processes such as information processing speed, response caution,

perceptual encoding time, or motor response time.

In fact, sequential sampling models have a track record for investigating



Chapter 1. Methods and Models of Perceptual Decision Making 7

unobserved cognitive processes. For instance, it is typically found that as people

age their RTs increase in cognitive tasks. For almost 20 years the dominant theory

of why performance declined with age was that aging resulted in a general slow-

down (Salthouse, 1996). However, when researchers analyzed the same data with

a sequential sampling model, they found that the locus of the slow-down in elderly

people was higher response caution, not a lower processing speed (Ratcliff, Thapar,

& McKoon, 2001, 2004; Thapar, Ratcliff, & McKoon, 2003; Ratcliff, Thapar, Gomez,

& McKoon, 2004; Ratcliff, Thapar, & Mckoon, 2003). Researchers later found that

higher response threshold settings in the elderly population correlates with reduced

white matter integrity in tracts connecting the pre-SMA to the striatum (Forstmann

et al., 2011), which are brain regions associated with adjusting response caution

(Forstmann et al., 2008).

1.2 Estimating Parameters: A Bayesian Approach

Drawing conclusions from sequential sampling models about cognitive pro-

cesses is dependent on accurately estimating parameters. Kolmogorov-Smirnov (e.g.,

Voss, Rothermund, & Voss, 2004), χ2 (e.g., Ratcliff, 2002), D*M (Verdonck & Tuer-

linckx, 2015), and maximum-likelihood (e.g., Myung, 2003; Heathcote, Brown, &

Mewhort, 2002) are some of the parameter estimation techniques used by researchers

to fit sequential sampling models to data. But recently, there has been a surge in

the usage of Bayesian parameter estimation techniques.

Bayesian parameter estimation allows researchers to justify their beliefs in

certain parameter values by using probability theory. For example, if we assume
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that a sequential sampling model is the generating process underlying RTs from the

motion dots task, then what is the probability of a particular drift rate or response

threshold, given the data we have observed. Bayesian estimation is simply the

process of calculating this probability. The calculation involves combining what we

believe about the parameters before having seen the data, the prior, with what the

data tell us we should believe about the parameters, the likelihood, to get a more

refined belief about parameters, the posterior. Bayes Rule formally describes this

relationship as:

P (θ|D) =
P (D|θ)P (θ)

P (D)
(1.1)

where θ denotes a model’s parameter and D denotes the data. P (θ|D) refers to the

posterior, P (D|θ) refers to the likelihood, and P (θ) refers to the prior. P (D) is the

probability of each possible data point across all possible parameter values – in other

words, it is the evidence for the entire set of possible parameter values. Bayes rule

states that if we multiply the likelihood by the prior, and then normalize the result

by dividing by the evidence, we get the posterior probability – or the probability of

a parameter value given the data.

In Bayesian estimation we use probability distributions to quantify the prior,

the likelihood, the evidence, and the posterior. The posterior distribution is the cen-

tral feature of Bayesian estimation and represents a set of possible parameter val-

ues with corresponding probabilities. The posterior distribution informs researchers

about what parameters they should believe in more and what parameters they should

believe in less.
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In the past, Bayesian estimation was not feasible because we did not have

the power of modern-day computers. Computing power is necessary because we can-

not derive posteriors analytically for complex models, such as sequential sampling

models. Instead, we need to numerically approximate the posterior distribution by

generating tens of thousands of random samples using a class of sampling meth-

ods known as Markov chain Monte Carlo (MCMC; see van Ravenzwaaij, Cassey, &

Brown, 2015, for a tutorial). The crux of MCMC Bayesian estimation is to ran-

domly generate samples from a posterior distribution that is not normalized, which

is proportional to the product between the likelihood and the prior, where

P (θ|D) ∝ P (D|θ)P (θ). (1.2)

In summary, Bayesian estimation is a principled way for researchers quantify

plausibility and uncertainty in model parameters. Bayesian methods have become

available to researchers due to the production of fast personal computers, which can

run MCMC numerical approximations to posterior distributions.

1.3 Model Comparison

Recall the motion dots task that John and Jane have completed in which

John was faster at responding than Jane. If a sequential sampling model was the

generating process then John’s faster RTs may be the result of a higher drift rate,

suggesting that he processes information faster. Another possibility is that John

has a lower response threshold, meaning that he is less cautious than Jane. Both
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models offer competing accounts of the data. Choosing between plausible models

is a fundamental problem that besets the field of psychology. The problem arises

because the models we work with are not the true generating processes (Box &

Draper, 1987), instead our models are approximations to the truth that are useful

for inferring about underlying cognition. One way to choose between models is to

assess their “usefulness”.

One metric of usefulness is how well a model predicts future data. However,

data typically has both important structure and random non-important structure –

which we call signal and noise, respectively. A model that is too simple will poorly

predict future data because it does not capture all the signal, and therefore, does not

give a comprehensive explanation of the behavior of interest. On the other hand, a

model that is too complex will poorly predict future data because it captures both

the signal and noise, but the noise present in current data will not likely be in the

future data. The best candidate model will capture all the signal and none of the

noise and is considered to have the best out-of-sample predictive accuracy.

The gold standard for estimating the out-of-sample predictive accuracy of a

model is cross-validation (Geisser & Eddy, 1979). This method involves partitioning

your data into training data and validation data. The aim is to fit your model to

training data and then assess the model’s capacity to predict the validation data

that were held out. Cross-validation is computationally expensive and therefore

researchers have sought computationally cheap approximations to cross-validation.

Information criteria are a popular set of methods that approximate the out-

of-sample predictive accuracy of a model. In short, these methods involve calculating
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the goodness-of-fit of a model and subtracting a value that represents the complexity

of the model from the goodness-of-fit value.

For non-Bayesian models, we can use methods such as Akaike’s information

criterion (AIC Akaike, 1974) or the Bayesian information criterion (BIC G. Schwarz,

1978). However, until recently there has been few methods to quantify out-of-

sample accuracy for Bayesian models. The deviance information criterion has been

the method of choice for over 10 years (DIC Spiegelhalter, Best, Carlin, & van der

Linde, 2002), with no popular alternatives. DIC is based on the assumption that the

posterior is a multivariate normal distribution and violations of this assumption can

cause accuracy issues. Recently Gelman, Hwang, and Vehtari (2014) have advocated

using the widely applicable information criterion (WAIC Watanabe, 2010) as an

improvement on the DIC method because WAIC requires no assumptions about

the posterior distribution and it is calculated from each data point, which improves

accuracy. Researchers have also developed efficient implementations of the WAIC

method (Vehtari, Gelman, & Gabry, 2016).

1.4 The Key Contributions

The main goal of this thesis is to investigate a number of perceptual decision-

making phenomena by applying sequential sampling models to behavioral data using

Bayesian estimation methods. In chapter 2, I develop a simple-response time model

of cognitive load effects on drivers and passengers of motor vehicles. In chapter

3, I investigate how listeners are able to perceive phonemes in speech and address

several long standing questions in the speech perception field. In chapter 4, I extend
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a current sequential sampling model of lexical decision to account for effects related

to different stimulus types. In these studies I select between competing models by

evaluating the predictive performance of each model.

Chapter 5 and 6 address two secondary goals. In chapter 5, I highlight two

conceptual differences between two prominent sequential sampling models. These

differences have practical implications when it comes to drawing psychological con-

clusions from the models. In chapter 6, I present a novel and promising method

that can be used to investigate cognitive processes in perceptual decision-making.

The method involves state-of-the-art motion tracking technology that maps the arm-

movements of participants, where the arm-movements serve as a window into cog-

nition.

In chapter 7, I summarize the current work and discuss future directions

of sequential sampling models. Specifically, I discuss how mathematical models

combined with advanced neuroimaging technology offers a powerful tool that can

be used to get a complete understanding of human cognition and the underlying

neurophysiology.
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2.1 Introduction

Cognitive psychologists use the term capacity to refer to the human ability

to cope with the cognitive load associated with increasing amounts of perceptual

information (e.g., Eidels, Donkin, et al., 2010; Townsend & Eidels, 2011). Human

capacity is often limited (Kahneman, 1973), yet many situations in modern life

require simultaneous processing of information from multiple signals. Given the

limited capacity for processing, it is important for researchers to understand the

consequences of such limitations in safety critical activities, such as driving a car.

Cognitive load from secondary tasks, such as talking on a cell phone, is

one of the main sources of distraction while driving (Strayer et al., 2013, 2015).

Distraction while driving is a significant cause of injuries and fatalities for drivers

and passengers on the roadway (Ranney, Mazzae, Garrott, & Goodman, 2000; Wang,

Knipling, & Goodman, 1996; Sussman, Bishop, Madnick, & Walter, 1985; Dingus et

al., 2006). Strayer and Johnston (2001) studied the effects of cell phone conversations

on performance in a simulated driving task. They found that conversations with

either a hand-held or a hands-free cell phone while driving resulted in a failure

to detect traffic signals, as well as slower reactions when the traffic signals were

detected (cf. Strayer, Drews, & Johnston, 2003). Surprisingly, no such decrements

are observed when a similar conversation is held between the driver and a passenger

in the car (Drews, Pasupathi, & Strayer, 2008). In fact, data on crash risk reveals

lower accident rates when an adult passenger is in the car than when the driver is

alone (Rueda-Domingo et al., 2004; Vollrath, Meilinger, & Krüger, 2002).
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The Detection Response Task (DRT) is an international standard for as-

sessing cognitive load on drivers’ attention (International Organization for Stan-

dardization, 2015) that can safely be deployed with no appreciable effect on driving

performance (Strayer, Turrill, Coleman, Ortiz, & Cooper, 2014). The DRT mea-

sures cognitive load by asking participants in a driving simulator to respond when

they detect a small light in their peripheral vision. Increases in response times (RT)

in the DRT measure the effect of increased cognitive load. Although the DRT is a

valid measure of the effects of cognitive load during driving (Strayer et al., 2013,

2015), there is little research on what components of DRT processing are affected

by increased cognitive load.

For instance, when using a hands-free cell phone, drivers are slower to re-

spond in the DRT compared to when they are not using the device (Strayer et al.,

2013). The increased RT is believed to result from a lower rate of information pro-

cessing, perhaps because the DRT and cell phone share a limited pool of processing

resources (Strayer, Watson, & Drews, 2011; Strayer et al., 2013). However, other

causes are also possible. People could be more cautious in the DRT with increased

cognitive load by setting a higher threshold for the amount of evidence needed to

decide the light is present. Or people may require more time for non-decision pro-

cesses such as stimulus encoding or response production. We address the role of

processing-rate, threshold, non-decision time, or some combination of these three,

by fitting a cognitive model of the DRT task under conditions that vary in the load

imposed by conversation. In the next section we outline the modeling framework

applied to the DRT data. The data was collected from both drivers and passengers

performing a simulated driving task. Cognitive load was manipulated by having the
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driver converse with a passenger in person or over a hands-free cell phone. These

conditions were compared to a baseline where the driver took part in the simulator

and DRT without any conversation.

2.1.1 Modeling the Detection Response Task

Sequential sampling models characterize responding as the result of a noisy

process of accumulating evidence towards a response threshold. They have been ex-

tensively used to understand choice RT in terms of effects on evidence accumulation

rate, response threshold, and non-decision time (S. D. Brown & Heathcote, 2008;

Ratcliff & McKoon, 2008). Recently, sequential sampling models – and in partic-

ular the single-bound diffusion model (W. Schwarz, 2001; Heathcote, 2004) – have

been applied to simple RT data (i.e., data where participants make only one type

of response) from a range of paradigms. Paradigms such as the psychomotor vigi-

lance test and brightness detection tasks (Ratcliff & Van Dongen, 2011), simulated

driving tasks (Ratcliff & Strayer, 2014; Ratcliff, 2015), go/no-go tasks (W. Schwarz,

2001; Heathcote, 2004), as well as pointing, picture naming and eye-movement tasks

(Anders, Alario, & van Maanen, 2016). We collected simple RT data from the DRT

(‘press a key if you detect light’) and fit the single-bound diffusion model in order

to investigate the causes underlying slowing due to increased cognitive load.

Figure 2.1 is a schematic of the single-bound diffusion model. The response

threshold, ‘a’, quantifies the amount of evidence needed to make a response. On each

trial, noisy evidence accumulates towards the response threshold at some rate – the

drift rate. Within-trial (moment-to-moment) noise causes accumulation of evidence
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Figure 2.1: The single-bound diffusion model and its parameter values: response
boundary (a), mean drift rate (v), between-trial variability in drift rate (η), and
non-decision time (Ter).

towards the threshold according to a Brownian motion. The Wald distribution

(Wald, 1947) describes the first passage times for Brownian motion with positive drift

rate toward a positive response threshold. When the threshold is crossed response

production is triggered. The time it takes to reach the response threshold is the

decision time. Non-decision time, Ter, is added to the decision time to make up the

total observed RT, so simple RT is described by a shifted-Wald distribution, with a

shift equal to the non-decision time.

Ratcliff and Van Dongen (2011; see also Ratcliff & Strayer, 2014; Ratcliff,

2015) fit an elaborated version of the single-bound diffusion model, where on each

trial the drift rate is sampled from a normal distribution with mean v and standard

deviation η. When the sampled drift rates are strictly positive, the resulting mixture
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of Wald distributions has an easily computed likelihood (see Equation 3 in Desmond

& Yang, 2011). However, when the sampled drift rates can be negative the likelihood

cannot be directly computed, and so Ratcliff and Van Dongen resorted to simulation

methods. They were interested in negative rates because they can result in the

threshold never being crossed, and so can account for failures to respond, which

were common in their application; simple RT data from sleep-deprived participants.

The trial-to-trial rate variability discussed above gives the single-bound dif-

fusion model more flexibility (Ratcliff & Van Dongen, 2011), yet also has a down side;

it is only possible to identify two of the three parameters associated with evidence

accumulation (i.e., the response threshold and the drift rate mean and standard

deviation; see Ratcliff & Van Dongen, 2011). For completeness, we fit models both

with and without trial-to-trial rate variability. Because accumulation rates in the

diffusion model are sampled from a normal distribution they could be negative and

accumulated evidence will not cross the response threshold, resulting in a failure

to respond. However, as failures to respond were relatively rare in our data (3%

of all trials), we assumed that drift rate variability followed a normal distribution

truncated below zero. This truncation enabled the easy calculation of likelihoods,

and consequently allowed us to use hierarchical Bayesian methods of estimation.

This in turn allowed us to fit data sets with a relatively small number of observa-

tions per participant (114 per condition) based on the extra constraint afforded by

hierarchical shrinkage effects (Shiffrin, Lee, Kim, & Wagenmakers, 2008).
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2.1.2 The Cognitive Load Effects of Conversation

There is a correspondence between established measures of cognitive ca-

pacity (Townsend & Nozawa, 1995; Townsend & Eidels, 2011) and drift rates in

choice RT tasks (Eidels, Donkin, et al., 2010). Increased cognitive load has been

shown to have large effects on the tail of RT distributions in both choice (Shahar,

Teodorescu, Usher, Pereg, & Meiran, 2014) and simple (Ratcliff & Strayer, 2014) RT

tasks. Smaller drift rates and larger response thresholds are also known to lengthen

the tail of RT distributions (Usher & McClelland, 2001; Ratcliff & McKoon, 2008;

S. D. Brown & Heathcote, 2008; Matzke & Wagenmakers, 2009). Thus, it is tempt-

ing to conclude that increased cognitive load is related to and possibly even causes

changes in drift rates and/or thresholds.

However, when researchers have used sequential sampling models to inves-

tigate cognitive load manipulations they have found that increased load affects a

range of cognitive processes. Specifically, these studies found that increases in load

either increase response thresholds (e.g., Heathcote, Loft, & Remington, 2015), trial-

to-trial drift rate variability (McVay & Kane, 2012), or non-decision times (Shahar

et al., 2014), or decrease drift rates (e.g., Schmiedek, Oberauer, Wilhelm, Süß, &

Wittmann, 2007; Sewell, Lilburn, & Smith, 2016). When the single-bound diffusion

model with trial-to-trial rate variability was fit to data from a simulated driving

task – where participants needed to press the brake to prevent a collision with a car

in front – talking on a cell phone affected the drift rate and/or response threshold

of drivers, but the effects could not be disentangled because of the aforementioned

parameter identifiability issues (Ratcliff & Strayer, 2014).
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To date, it is not clear how cognitive load imposed by passenger and cell

phone conversation impacts the cognitive processes underpinning DRT performance.

Our experiment investigated this issue by assigning pairs of participants to roles of

a passenger or a driver in a high-fidelity driving simulator. Passengers were either

seated next to the driver or in a separate room. In both cases they were instructed to

converse casually with the driver, but to refrain from comments concerning the road.

The latter stipulation aimed to remove a likely cause of the lack of DRT decrements

noted by Drews et al. (2008) when the passenger was in the car; facilitation due to

passenger-supplied warnings. However, other causes, such as timing of conversation

to avoid conflict with safety critical events, may remain. Both driver and passenger

were fitted with a DRT device (Strayer et al., 2013), as illustrated in Figure 2.2. The

driver was requested to drive as normal but also to respond quickly and accurately

to the DRT signal when they detected the red light in their visual field.

Figure 2.2: The DRT device used in the current study.
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Cognitive load was manipulated across three conditions for the driver: a

baseline where they were driving alone with no conversation, driving while talking

with a passenger sitting next to them in the simulator, or driving while talking over

a hands-free cell phone to a person in another room. We used a one-way Bayesian

ANOVA (Morey, Rouder, & Jamil, 2014; Rouder, Morey, Speckman, & Province,

2012) to examine directly observed DRT performance. We hypothesized that drivers

in the no conversation condition would respond more quickly to the DRT signal

relative to driving while conversing over a cell phone. We also hypothesized that

the decrements due to conversation could be larger with the hands-free cell phone

relative to in-car conversation, but that this difference may be minimal due to our

instruction to avoid comments about the driving task.

We then fit a set of single-bound diffusion models with different parameter

settings instantiating different explanations of the effects of experimental manipula-

tions in terms of drift rates, response thresholds, non-decision times, or any combi-

nation thereof. These competing explanations were compared based on the WAIC

measure of out-of-sample prediction error (Watanabe, 2010; Gelman et al., 2014). In

addition, we compared model fits with and without between-trial drift rate variabil-

ity by comparing the predictive performance of models with the standard deviation

of drift rates either fixed at zero or freely estimated.
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2.2 Method

2.2.1 Participants

Forty undergraduate students at the University of Utah participated in this

study in return for course credit (mean age = 23, 22 males). They all had normal

or corrected to normal vision, and a valid drivers license.

2.2.2 Stimuli and Design.

The DriveSafetyTMDS-600 simulator was used in this experiment. The DS-

600 consists of a Ford Focus cab surrounded by three large screens encompassing a

270◦ view. The simulated vehicle is based on the vehicular dynamics of a compact

passenger sedan with automatic transmission. The driving scenario was designed

using DriveSafety HyperDrive Authoring Suite. A two-way, four-lane interstate

highway scenario was designed for this experiment. The roadway has four straight

sections (10 miles each) connected by two wide-radius curves (1 mile each).

Both the driver and passenger were fitted with the DRT. The light diode

was positioned an average 15◦ to the left and 7.5◦ above the participant’s left eye

and was held in a fixed position on the head with a headband (see Figure 2.2 again).

RT to the DRT signal was recorded with millisecond accuracy via a button attached

to participant’s left thumb and encompassed the time between stimulus presentation

and response.
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There were a total of five within-subject conditions for each pair of partic-

ipants, which were counterbalanced using a quasi Latin Square design. For drivers

these were: (1) single (driving only) task, where drivers drove the simulated car and

responded to the red light, but were not engaged in any type of conversation; (2)

Dual task ‘passenger’ – driving and conversing with a passenger seated next to the

driver; (3) Dual task ‘mobile’ – driving and conversing, through a mobile phone,

with another person seated in a separate room. There were an additional two condi-

tions for passengers; in the drivers’ conditions (2) and (3) the passengers were also

fitted with a DRT device, and asked to detect the red light.

2.2.3 Procedure

Participants drove on a simulated multi-lane freeway with moderate traffic,

which had approximately 1500 vehicles in each lane per hour. Participants were given

a five-minute practice session to familiarize themselves with the driving simulator.

In each of the conditions, except for condition 1, the drivers and passengers were

asked to speak and listen in equal proportions (i.e., 50% speaking and 50% listening).

In both the passenger and cell phone conversation conditions, participants

were instructed to have a natural conversation as they would in real life; no restric-

tions about the topics covered in the conversation were provided to them. In con-

ditions 3 and 5 the driver and passenger initiated a call via a hands-free Bluetooth

earpiece. The volume was adjusted to a comfortable level before the experiment

began.
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The DRT task presented red lights every three to five seconds via the head

mounted device. The lights were presented at exactly the same time for the driver

and passenger. Both participants were required to respond to the light.

2.3 Mean RT Analysis

All RTs below 250ms (0.02%) were discarded, as were all RTs slower than

1000ms (0.2%). Using the R programming language (R Development Core Team,

2016), RTs were analyzed with a one-way JZS Bayesian ANOVA (Morey et al., 2014;

Rouder et al., 2012), with a default setting for Cauchy priors and with subjects

included as a random effect. The cognitive load manipulation was included as a

main effect with levels – driver responding only (D), driver responding while talking

with a passenger in the car (DP), driver responding while talking to the passenger

on a cell phone (DC), passenger responding while with the driver in the car (PD),

and passenger responding while talking to the driver on the cell phone (PC). The

mean RTs (in seconds) in each condition were D = .466, DP = .502, DC = .505, PD

= .461, and PC = .452.

We tested the main effect model against a null model which suggests no

main effect on RT, reporting Bayes factors (BF 10), which quantify evidence in favor

of the main effect model over the no main effect model as a ratio. For example, when

BF 10 = 5 the observed data are 5 times more likely under the main effect model than

under the no main effect model. When BF 10 = 1/5 = .2 the observed data are 5

times more likely under the no main effect model than under the main effect model.

The Bayes factor ANOVA revealed that the cognitive load main effect model was
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preferred to the null model by a Bayes factor of 4.8. Thus the data provide positive

evidence (Kass & Raftery, 1995) against the hypothesis of no main effect on RT.
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Figure 2.3: Violin plots of predicted response time data from the one-way JZS
Bayesian ANOVA. Violin plots include an ×, which marks the median RT, and
mirrored on either side are rotated kernel density plots of the 95% highest density
interval of each posterior distribution. Superimposed are Bayes factors from post-
hoc paired-samples t-tests. The 5 cognitive load conditions were driver responding
only (D), driver responding with a passenger in the car (DP), driver responding
while talking to the passenger on a cell phone (DC), passenger responding with
the driver in the car (PD), and passenger responding while talking to the driver
on the cell phone (PC).

We conducted post-hoc Bayesian paired-samples t-tests to see which condi-

tions differed from each other, with detailed results reported in Figure 2.3. There

was strong evidence that the driver’s responses to the DRT signal were slower when

conversing (DP vs. D), indicating the DRT was sensitive to the additional cognitive

load. There was positive evidence for no difference in the driver’s RT as a function
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of the passenger’s location (DP vs. DC). There was also positive evidence for no

difference in the passenger’s RT between locations (PD vs. PC). To test if driv-

ing affected DRT performance we compared the corresponding driver and passenger

conditions; Figure 2 shows a clear trend whereby driver responses (DP and DC con-

ditions) were slower than the corresponding passenger conditions (PD, PC), but the

statistical evidence was equivocal (BF of 1.40 and 1.41), likely indicating substantial

individual differences.

2.4 Model-Based Analysis

Details about the hierarchical Bayesian model fitting routine are presented

in the Appendix A. To select between competing models we measured how well each

model could predict future data using WAIC. WAIC includes a goodness of fit value

and a measure of the model’s complexity. Model complexity is subtracted from the

goodness-of-fit measure to approximate an unbiased estimate of the model’s out-of-

sample prediction error. When comparing models, the model with the lower WAIC

value is better able to predict future data.

We fit 10 separate single bound diffusion models to the DRT data, five

models with trial-to-trial rate variability (η) fixed at zero and five models where we

estimated η. Plots presented in Appendix A show that all models provide an accurate

account of the data. However, WAIC (Table 2.1) did indicate a clear preference for

allowing both response threshold and non-decision time to vary over cognitive load

conditions. Most importantly, models in which the mean rate explained the effect

of the experimental factor were strongly rejected.
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There was very little difference between the versions of the response thresh-

old and non-decision time model with and without trial-to-trial rate variability, with

the model with η fixed at zero slightly preferred. We will refer to the latter model

as the winning or a + Ter model, and focus our further analysis on it given it is

both more parsimonious and less effected by parameter identifiability issues than

the alternative.

Table 2.1 also provides a measure of the best fit for each model, the deviance

of the mean of all posterior parameter estimates. The two a + Ter models have

the best fit among the five model that share their assumption about η, showing

that their advantage in WAIC is not purely due to being more parsimonious. The

addition of trial-to-trial rate variability hardly improves the fit of the a+ Ter model

variants, consistent with generally small estimates of the η parameter for that model

(mean of group level mean posterior of η = 0.177). In Appendix A we present

hazard functions, which provide evidence against the inclusion of trial-to-trial rate

variability, further confirming our selection of the simpler model with η = 0.

Table 2.1: WAIC results, number of effective parameters and deviance of the posterior
mean for all models.

Model WAIC (η) Effective Parameters Deviance WAIC (η = 0) Effective Parameters Deviance

a ∼ F & v ∼ 1 & η ∼ 1 & ter ∼ 1 -19295 130.8 -19428 -19310 128.5 -19441

a ∼ F & v ∼ 1 & η ∼ 1 & ter ∼ F -19476 180.6 -19665 -19477 178.3 -19664

a ∼ 1 & v ∼ F & η ∼ 1 & ter ∼ 1 -18897 131.2 -19030 -18873 129.8 -19005

a ∼ 1 & v ∼ F & η ∼ 1 & ter ∼ F -19329 197.7 -19536 -19321 196.5 -19526

a ∼ 1 & v ∼ 1 & η ∼ 1 & ter ∼ F -18958 137.0 -19102 -18943 133.0 -19083

Note. Bold WAIC value indicates the preferred model.

∼F indicates different parameter estimates were allowed for each level of the experimental factor.

∼1 that the same value was estimated for all levels.

Table 2.2 shows median values of the group-level mean posterior distribu-

tions for response threshold and non-decision time from the a+Ter model with η = 0.
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We used Bayesian predictive p-values to statistically test for differences between the

posterior distributions (Meng, 1994). We calculated the difference between subject

level posterior distributions, or plausible values (Marsman, Maris, Bechger, & Glas,

2016), and then averaged the differences over subjects.

Table 2.2: Median values of the
group-level mean posterior distributions
from the winning a+ Ter model

D DP DC PD PC

a 1.298 1.444 1.450 1.287 1.282

Ter .177 .183 .182 .181 .166

v 4.589 - - - -

Note. Ter values are in seconds, and

the same v applies for all conditions.

We calculated the probability (p-value) that the difference distributions

were equal to or less than 0. Similar to the traditional p-value, a low predictive

p-value indicates a low probability of observing this or more extreme data if the

null hypothesis was true. The response threshold increased from the D to the DP

condition (p < .001) and from the D to the DC condition (p < .001), suggesting that

drivers were more cautious when cognitive load increases. Thresholds are comparable

between the DP and DC conditions (p = .46), indicating the same level of elevated

caution for cell phone and in-car conversations. Drivers had higher thresholds than

passengers when the passenger was in the car (p < .001) and when they were talking

over the cell phone (p < .001), which further suggests that increased cognitive load

increases response thresholds in the DRT.
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Non-decision time for passengers on the phone outside the simulator was

15ms faster compared to passengers talking in person in the simulator (p = .06),

but no other non-decision time parameters were different from each other (all p >

.23).1 This could be due to the added information that the passenger could see

in a dynamic simulator environment compared to the static room from which they

conversed over the phone, and so is not relevant to our focus here on cognitive load

effects.

2.5 General Discussion

In our experiment, pairs of participants, assigned as either driver or pas-

senger, took part in a driving simulator and detection response task (DRT) simul-

taneously. In the DRT, participants were required to respond when a small light

appeared in their peripheral vision. The driver completed the DRT in three dif-

ferent conditions: by themselves in the simulator, talking with a passenger in the

simulator, and talking to a passenger (who was outside of the simulator) on a cell

phone. We recorded the response times (RT) in the DRT from both the driver and

passenger.

RTs in the DRT are a validated measure of cognitive load (International

Organization for Standardization, 2015), where slower RTs represent increased cog-

nitive load. We found that drivers had slower RTs when they were conversing with

a passenger in person or over the phone compared to when they were by themselves

1We confirmed that the Ter effect was genuine by fitting another model of simple RT (see
Appendix A), the log-normal race (Heathcote & Love, 2012).



Chapter 2. A Simple Response Time Model of Cognitive Load Effects 30

– suggesting that both types of conversation increased cognitive load. We mod-

eled the DRT behavioral data with the single-bound diffusion model to determine

if longer RTs, which reflect increased cognitive load, are due to differences in drift

rates, response thresholds, or non-decision times.

We found that the cognitive load effect on DRT performance was due to

an increase in the participant’s response thresholds, but no evidence of an effect

of cognitive load on the time to encode stimuli and to produce responses or on

the rate of evidence accumulation. In contrast to Ratcliff and Van Dongen (2011),

but consistent with Anders et al. (2016), we did not find it necessary to allow for

variability in the rate of evidence accumulation from trial to trial to provide a good

account of our DRT data.

Our findings may at first seem surprising because they are not in line with

the capacity sharing account of DRT and driving performance (e.g., Strayer et al.,

2011, 2013). However, separate pools of capacity for DRT and driving is consistent

with the finding that having to preform the DRT does not adversely impact driving

(Strayer et al., 2014). Why then is the DRT a sensitive measure of cognitive load?

We suggested that it may be because of a general tendency for people to be more

cautious when under increased cognitive load, but further work is required to better

understand the processes underlying threshold adjustments, and why they occur.

One possibility is that the process is consciously mediated, with participants

slowing in both the DRT and driving task because they deliberately set higher

threshold for the secondary DRT task when they perceive they are subject to a

higher workload in the primary driving task. This possibility is consistent with
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the strong correlation found between DRT decrements and self-report measures of

subjective workload (Strayer et al., 2013), such as the NASA Task Load Index (Hart

& Staveland, 1988).

Alternately, threshold increases may occur to reduce the chance of response

conflicts (i.e., one response preempting another), as suggested by delay theory (Loft

& Remington, 2013) of dual task costs in prospective memory tasks (Heathcote, Loft,

& Remington, 2015). Such conflicts may not necessarily be peripheral in nature; they

could also be mediated by response gating for both tasks being handled in the same

brain area, such as the basal ganglia (Forstmann et al., 2008), again with priority

given to the primary driving task.

Many cognitive tasks require a decision between two or more alternatives

and record both the choice and the time to make that choice. In such choice RT

data, threshold and rate effects are relatively easy to disambiguate as they have

opposite effects on accuracy and RT (i.e., a higher threshold increases accuracy and

RT, whereas a higher drift rate increases accuracy but decreases RT). In simple RT,

in contrast, these effects are differentiated only by relatively subtle effects on the

distribution of RT. Although tests based on out-of-sample predictive accuracy clearly

favored a threshold account of cognitive load effects, and the corresponding model

produced clear and sensible effects on threshold estimates, it would be prudent in

future work to seek converging evidence about our somewhat surprising findings.

One potential way forward is to examine the effects of speed vs. accuracy

instructions, which are usually assumed to selectively affect response thresholds

(but see Rae, Heathcote, Donkin, Averell, & Brown, 2014). Another possibility is
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to compare cognitive load effects on the traditional (simple RT) DRT and a version

requiring a choice response, which should allow for a stronger comparison of rate vs.

threshold models. A choice version of the DRT (e.g., respond ’A’ for a green light,

’B’ for a red light) could offer more nuanced tests of cognitive load effects as long

as it does not have a detrimental impact on driving performance.
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3.1 Introduction

Phonemes are linguistic representations with an acoustic counterpart that

can be characterized in a multidimensional acoustic space. Values along each acous-

tic dimension can serve as cues for listeners to recognize a speech sound as a particu-

lar phoneme. The cues, such as first (F1) and second (F2) formant frequency, dura-

tion, and fundamental frequency, are acoustic and continuous. Yet, these cues map

onto phonological representations that may not be continuous, i.e., the phonemes.

Phonemes can be viewed as clusters of exemplars in a multidimensional phonetic

space (Pierrehumbert, 2001), or as abstract representations that are connected to

a range of values along multiple phonetic dimensions (Boersma, 2007). Speech

perception is the process of mapping the continuous acoustic information onto the

phonological categories (Holt & Lotto, 2010).

Each phoneme correlates with multiple acoustic dimensions (Lisker, 1986)

and multiple acoustic cues influence each phoneme categorization (Holt & Lotto,

2006). Some cues contribute strongly to a listener’s decision and some cues con-

tribute weakly to the decision – a phenomenon called cue weighting. Cue weighting

in speech perception often reflects the reliability of the cues for the recognition of

phonological categories in the ambient language (Holt & Lotto, 2010).

Researchers investigate cue weighting using a range of methods: compu-

tational statistical modeling (Toscano & McMurray, 2010; McMurray, Aslin, &

Toscano, 2009), eye-tracking (Reinisch & Sjerps, 2013), neuro-physiological measure-

ments (Lipski, Escudero, & Benders, 2012), in normal-hearing and hearing-impaired
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populations (Winn, Chatterjee, & Idsardi, 2012; Winn, Rhone, Chatterjee, & Id-

sardi, 2013), and most commonly, with behavioral data from phoneme categorization

tasks (Repp, 1982). In the latter, researchers systematically vary the acoustic cue

values of sounds that are played to participants and observe the effects on phoneme

categorization. Cue weighting is measured by how much each cue contributes to

the categorization response and is therefore based on a measure at the end of pro-

cessing and decision-making. To use categorization data to learn how acoustic cues

are connected with phonological categories, we have to make the assumption that

categorization data directly reflects the mapping of the experimentally manipulated

cues onto the phonological categories. However, there are two fundamental issues

with this assumption.

The first problem is that cue weighting is measured for a phoneme contrast

and does not give us the association between cues and each category separately (i.e.,

the cue-to-one-phoneme mapping). For example, a cue that is strongly associated

with one phoneme in the contrast and only loosely associated with the other phoneme

can appear to be indiscriminately ‘heavily weighted’, because the cue contributes

relatively strongly to the decision between these two phonemes. Given this confound,

it is difficult to infer how much each acoustic cue contributes to each individual

phoneme in the contrast.1

The second problem is that researchers only observe the association be-

tween experimentally manipulated cues and overt behavioral responses (i.e., the

1We are interested in how much each cue contributes to each phoneme in the contrast, which is
not the same thing as investigating how much an acoustic cue contributes to a particular phoneme
outside the context of the contrast.
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cue-to-response association), which means they need to assume that this associa-

tion directly reflects the cue-to-phoneme mapping. Yet, a strong cue-to-phoneme

mapping may not manifest as a strong cue-to-response association. One reason for

a weak association between cues and responses despite a strong mapping could be

that listeners do not have good access to the cue. Perhaps the cue is not always loud

enough to be perceived or perhaps the cue appears late in the speech signal. Cues

that appear later in the signal might be strongly associated with a phoneme, but

may not appear as such in a categorization task because earlier appearing cues have

already been processed and potentially determined the response (cf. McMurray,

Clayards, Tanenhaus, & Aslin, 2008; Reinisch & Sjerps, 2013). In order to address

this issue, it is necessary to learn more about how listeners process the acoustic cues.

For instance, is cue weighting as inferred from categorization data driven by differ-

ences in when cues are available in time, or by listeners processing one acoustic cue

faster than another? In any case, researchers need a way to investigate such latent

processes in order to derive more accurate conclusions about acoustic cue weighting

in terms of cue-to-phoneme mapping.

Both problems limit our ability to use categorization data to learn about

how listeners map acoustic information onto phonological categories. Therefore,

we need a method to account for how acoustic cues are cognitively processed for

each phoneme in the contrast. Below we discuss response times (RT) and eye-

tracking, which are alternative measures to categorization data that give insight

into the processing of acoustic information, but neither of these measures address

both issues.

First, researchers can use the RT associated with phonological decisions to
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investigate phoneme perception. For example, researchers have investigated pro-

cessing differences between non-identical and identical phonemes (Pisoni & Tash,

1974) and have determined that phoneme categorization decisions depend more on a

phoneme’s position in acoustic space than their perceived category goodness (Miller,

2001).

However, there are difficulties with analyzing either choice data or RT in

isolation. We know that the accuracy of a decision depends on how fast the deci-

sion is made – in other words, a participant’s speed-accuracy trade-off setting (e.g.,

Wickelgren, 1977; Luce, 1986; Heitz, 2014). Without any insight into the trade-off

settings used by participants, researchers may draw incorrect conclusions from choice

or RT data alone. Furthermore, to analyze RT researchers typically average over all

observations for each participant in order to subject the means to a statistical test,

such as ANOVA. Analyzing the RT in this manner can lead to researchers drawing

incorrect conclusions (e.g., Ashby, Maddox, & Lee, 1994; Curran & Hintzman, 1995;

Heathcote, Brown, & Mewhort, 2000) and does not allow researchers to learn about

the latent cognitive processes involved in speech perception. For example, an RT

of 700ms on a given trial suggests that 700 ms was needed to perceptually encode

the sound, decide what phoneme was heard, and execute a motor response. But,

we cannot know how long each of these processes takes from analyzing mean RT

with linear models. Given that RT is a measure at the end of processing, analyzing

RTs alone only inform researchers about the cue-to-response association but not the

cue-to-phoneme mapping.

Eye tracking is a another useful measure that is frequently used to observe
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how listeners process experimentally manipulated cues online (e.g., Allopenna, Mag-

nuson, & Tanenhaus, 1998). For example, eye-tracking can be used to infer whether

the order in which acoustic cues become available to listeners affects listeners’ in-

terpretation of the speech signal (McMurray et al., 2008; Reinisch & Sjerps, 2013).

In fact, McMurray et al. (2008) showed that listeners do not wait for cues that are

available later in a speech signal (e.g., vowel duration) to begin using earlier avail-

able cues (e.g., voice onset time). Moreover, Reinisch and Sjerps (2013) showed that

listeners use vowel spectral cues before vowel duration cues, because listeners need

to wait for the vowel offset before they have full information about the duration.

Eye-tracking data, like RTs, are typically averaged over all observations

for each participant, meaning that the aforementioned objections against inferences

from averaged data hold for eye-tracking data as well. Furthermore, eye-tracking

data are subject to the first confound of categorization data discussed in detail above.

That is, they can give insight into cue-weighting, but do not give the cue-to-one-

phoneme mapping for phoneme contrasts.

Categorization, RT, and eye-tracking are all useful methods in speech per-

ception research, but none of them address both the cue-to-one-phoneme mapping

and the cue-to-phoneme mapping issues discussed above. In this paper, we advo-

cate the simultaneous analysis of phoneme categorization data with their associated

RTs using a sequential sampling model (e.g., Ratcliff & McKoon, 2008; Usher &

McClelland, 2001; S. D. Brown & Heathcote, 2008). The following section describes

the sequential sampling model we use are and what it can add to the current speech

perception literature.
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3.1.1 The Linear Ballistic Accumulator

A parsimonious sequential sampling model that retains all of the explana-

tory power of more complex models (e.g., Ratcliff & Rouder, 1998; Usher & Mc-

Clelland, 2001), while having the advantage of being tractable, is the linear ballistic

accumulator (LBA; S. D. Brown & Heathcote, 2008).2 The LBA has been applied

to a number of perceptual discrimination paradigms (e.g., Ho, Brown, & Serences,

2009; Forstmann, Brown, Dutilh, Neumann, & Wagenmakers, 2010; Forstmann et

al., 2008; Cassey, Heathcote, & Brown, 2014; van Ravenzwaaij, Provost, & Brown,

2016) and has been fit to tasks where the responses are categories (e.g., ?, ?; True-

blood, Brown, & Heathcote, 2014), which is the same set-up as used in a phoneme

categorization task. Therefore, the LBA can be feasibly extended to model phono-

logical decisions in categorization tasks that yield choice data and RTs.

Suppose a participant needs to identify whether they have heard /A/ or /a:/

– a schematic of the LBA explanation for this task is shown in Figure 3.1. At the

beginning of a trial a participant hears a sound through a pair of headphones. It takes

the listener time to perceptually encode the sound. After perceptual encoding, the

evidence from the stimulus serves as input for the decision process. The LBA does

not commit to what evidence is sampled from stimuli, only that the evidence leads

to a response. In the discussion we suggest that one possible interpretation of the

sampled evidence is the strength of the mapping between the acoustic information

and the phoneme category associated with the response option. The evidence drives

the decision process, which involves independent evidence accumulators for each

2There is a closed form expression for the likelihood function, which allows for relatively quick
model fitting.



Chapter 3. A Linear Ballistic Model of Vowel Perception 40

response option. Each accumulator has a starting point of evidence accumulation k,

which is a random value between 0 and A on each trial, a drift rate ξ that specifies the

rate of evidence accumulation, and a response threshold b that specifies the amount

of evidence needed to make a decision. From k, both accumulators independently

race towards b at their respective drift rates. On each trial, drift rates are sampled

from a normal distribution with mean drift rate v and standard deviation s.3 The

first accumulator to reach the response threshold determines the decision that is

made. The time it takes for the LBA process to go from the starting point to the

response threshold is the decision time. After a decision is made, the participant will

need to overtly execute their response with a key press – the time needed for this

overt response is the response execution time. The sum of the perceptual encoding

time and response execution time makes up the non-decision time t0. The total

RT on a given trial is the sum of the decision time and the non-decision time. For

convenience, an overview of the LBA parameters is provided in the table at the

bottom of Figure 3.1.

3.1.2 Measuring Cognitive Processes From Behavioral Data

The LBA divides response times into decision times and non-decision times.

The decision time is re-expressed as the amount of evidence needed for a response

divided by the speed of evidence accumulation, which can be formally expressed as

b−k
ξ

. With the LBA we can go beyond the temporal aspects of the decision process

3Human performance and the activity of neuron populations result in highly variable behavior in
experiments, even when participants are presented with the same stimuli (see Usher & McClelland,
2001, for a discussion of sources of variability in sequential sampling models). In addition, these
variability parameters explain key aspects of RT data, such as slow error RT (Ratcliff, 1978) or
fast error RT (Laming, 1968) relative to correct RT.
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Table 1
Parameter labels and descriptions.

Symbol Name Psychological Interpretation

v Mean Drift Rate Speed of information processing

b Response Threshold Evidence required to make decision

A Starting Point Variability Variability in the initial evidence across trials

s Drift Rate Variability Variability in the speed of processing across trials

t0 Non-Decision Time Time for processes other than decision processing

rate. The drift rate is governed by the quality of evidence being sampled from the

stimulus, while larger drift rates mean faster speed of processing. We also go beyond

the temporal aspects of the decision process by estimating non-decision time or

response threshold, where we can learn about the non-decision processing time or

response caution/bias associated with a participant’s decision.

But how can we get unique estimates of non-decision time, drift rate, and

response threshold from behavioral data? We can recover unique estimates because

these parameters have unique behavioral signatures in RT distributions (Ratcli� &

McKoon, 2008). For example, the non-decision time parameter determines the smallest

possible RT and also shifts the entire RT distribution, yet this parameter has no e�ect

on the choices made. Changes in drift rate cause small changes to the leading edge of

the RT distribution and large changes to the tail. In contrast, changes in response

thresholds also shift the leading edge and cause relatively smaller changes to the tail.

We argued that there are two fundamental issues with using categorization data

to learn about the mapping between acoustic cues and phonemes. The first problem is

that cue weighting is measured for a phoneme contrast and does not actually give us

the association between cues and each category in a contrast separately. The second

Figure 3.1: The linear ballistic accumulator model and its account of choosing
between /A/ or /a:/. The top left panel shows the accumulator corresponding to
the /A/ response. The top right panel shows the accumulator corresponding to
the /a:/ response. In the bottom panel we provide labels and descriptions for each
LBA parameter.

by estimating drift rate. The drift rate is governed by the quality of evidence being

sampled from the stimulus, with larger drift rates meaning faster speed of processing.

We can also estimate non-decision time or response threshold and learn about the

time needed for processes outside of the decision process or the response caution or

bias associated with a participant’s decision.
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But how can we get unique estimates of non-decision time, drift rate, and

response threshold from behavioral data? We can recover unique estimates because

these parameters have unique behavioral signatures in response proportions and RT

distributions (Ratcliff & McKoon, 2008). For example, the non-decision time param-

eter determines the smallest possible RT and also shifts the entire RT distribution,

yet this parameter has no effect on the response proportions. Changes in mean drift

rate cause small changes to the leading edge of the RT distribution – the fastest re-

sponses – and large changes to the tail – the slowest responses. In contrast, changes

in response thresholds also shift the leading edge and cause relatively small changes

to the tail. Higher mean drift rate leads to faster RTs in combination with a higher

accuracy, whereas lower response thresholds lead to faster RTs with lower accuracy.

There are several benefits to using the LBA to analyze choice and RT data

from a phoneme categorization task. First, the adjustment of response thresholds

in the LBA is an intuitive account of the speed-accuracy trade-off, which cannot

be addressed by linear models of choice or RT. Second, rather than analyzing av-

eraged data that can lead to researchers drawing incorrect conclusions (e.g., Ashby

et al., 1994; Curran & Hintzman, 1995; Heathcote et al., 2000), the LBA can be

used to analyze entire RT distributions for all responses. This analysis decomposes

the behavioral data into their underlying constituent components of processing –

such as drift rates, response thresholds, and non-decision times. Finally, the LBA

reconciles the fact that continuous acoustic information leads to categorical deci-

sions by explicitly describing phoneme decision-making as a result of an evidence

accumulation process. Taken together, the LBA allows us to address both the cue-

to-one-phoneme mapping and the cue-to-phoneme mapping issues outlined in the
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introduction. Specifically, we can learn about the cue-to-one-phoneme mapping

by investigating the evidence accumulation dynamics in each accumulator, which

represent processing for each phoneme response option. We learn about the cue-

to-phoneme mapping by investigating how the parameters of the LBA model are

affected by changes in acoustic information.

3.1.3 The Current Study

Spectral quality and duration are two of the acoustic cues that listeners

can use to categorize vowels (e.g., Bohn & Flege, 1990; Flege, Bohn, & Jang, 1997;

Adank, Van Hout, & Smits, 2004; Gerrits, 2001; Escudero, Benders, & Lipski, 2009;

Reinisch & Sjerps, 2013). For example, first language (L1) English speakers weigh

static spectral cues more than duration cues as they mostly use properties in the

F1 and F2 to recognize the contrast between /i:/ and /I/ and between /æ/ and /E/

(Flege et al., 1997). On the other hand, second language (L2) speakers of English

with L1 German mostly use the duration of the stimuli to recognize vowels in those

same contrasts (Bohn & Flege, 1990). Similarly, L1 Dutch listeners weigh spectral

cues heavier than duration cues to distinguish between /A/ and /a:/, whereas Turkish

and Spanish L2 learners of Dutch weigh vowel duration heavier than spectral quality

(Nooteboom & Cohen, 1984; van Heuven, Van Houten, & De Vries, 1986; Escudero

et al., 2009; van der Feest & Swingley, 2011).

Here, we analyze data from an experiment in which L1 Dutch listeners

categorize synthetic vowels as the Dutch short and closed /A/ and the long and

open /a:/. /A/ and /a:/ are a useful set of stimuli as these vowels are typically
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realized with both spectral and duration differences (Adank et al., 2004). These two

vowels are the only two low vowels in Dutch, which are each other’s closest neighbors

in the acoustic vowel space defined by F1 and F2 and alternate in the singular–plural

pairs of some nouns (e.g., /pAd/ - /pA:d@/) as well as verbs (/kVAm/ - /kVa:m@/).

We will subject the categorization and RT data to Bayesian logistic regres-

sion and Bayesian ANOVA (Rouder et al., 2012), respectively. These more tradi-

tional analyses will attempt to replicate the relatively heavier weighting of vowel

quality compared to the duration of a vowel, which is typically observed in catego-

rization tasks involving the Dutch contrast between /A/ and /a:/ (e.g., Nooteboom

& Cohen, 1984; van Heuven et al., 1986; Escudero et al., 2009; van der Feest &

Swingley, 2011; Reinisch & Sjerps, 2013). Then, we will analyze both RT and ac-

curacy simultaneously with the LBA. The LBA analysis will test if spectral quality

and duration affect the drift rates of participants when they are categorizing /A/

and /a:/. We will also test if the effects of the acoustic cues on drift rates as well

as the participants’ response thresholds are different across the two vowels. Finally,

and in line with Reinisch and Sjerps (2013), we will test if longer vowel durations

systematically increase the time needed for perceptual encoding, which will manifest

as longer non-decision times for sounds with longer durations.
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3.2 Method

3.2.1 Participants

Thirty participants were tested (5 males and 25 females) at the Radboud

University Nijmegen, the Netherlands. All participants had normal or corrected

to normal vision and reported no hearing impairments. They were native Dutch

speakers. All participants received monetary reimbursement for their participation.

3.2.2 Materials

One-hundred different vowel stimuli were used. They were synthetic isolated

vowels covering a 10×10 matrix ranging from the typical /A/, with low formants and

a short duration, to a typical /a:/, with high formants and a long duration. The F1

and F2 values as well as the duration of each of the 10 steps are presented in Table

3.1. The spectral quality of the typical /A/ and /a:/ was based on production data

from 50 male speakers (Pols, Tromp, & Plomp, 1973), while the duration values

were based on 10 male speakers (Adank et al., 2004), following the stimulus creation

procedure in Escudero et al. (2009). The sounds had a falling fundamental frequency

from 150Hz to 100Hz, to simulate male speech.

The 100 stimuli used in the experiment were synthesized in the computer

program Praat (Boersma, 2002). The difference between two consecutive steps on

the duration dimension equals one-tenth of the difference between the logged dura-

tion (ms) of the typical /A/ and /a:/. The difference between two consecutive steps

on the spectral quality dimension equals one-tenth of the difference between the
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typical /A/ and /a:/ spectral quality in mel. By generating stimuli in this way we

can approach equal psychoacoustic scaling across the steps within each dimension,

although not necessarily across dimensions. We can compare cue weighting across

dimensions as the dimension endpoints were based on typical values of the vowels

produced in language.

Table 3.1: F1, F2, and duration values, which were
crossed factorially to generate all 100 stimuli.

Step Spectral Quality (F1/F2 Hz) Duration (ms)

1 687/1099 96

2 699/1121 104

3 711/1143 113

4 723/1165 123

5 736/1188 134

6 749/1211 146

7 762/1235 158

8 775/1259 172

9 788/1283 187

10 801/1308 203

The experiment was run in a sound attenuated quiet booth using Dell Pre-

cision T3600 computers, with an Intel Xeon Processor E5-1620 and a Sound Blaster

ZX Gamer audio card. Stimuli were played over Sennheiser HD 215 MKII DJ head-

phones.
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3.2.3 Procedure

On each trial, participants heard a sound over headphones and saw the

orthographic symbols for /A/ (“a”) and /a:/ (“aa”) on the left and right of the

computer screen. The position of the symbols corresponded to the response key

side, which was fixed for each participant and counterbalanced across participants.

Participants were required to respond by pressing one of the two response keys within

2500ms after stimulus onset, otherwise they were presented with ‘Te Langzaam’ (Too

Slow), which remained on screen for 3000ms. Once a response was made the next

trial started immediately. The 100 unique stimuli (10 formant steps × 10 duration

steps) were played once per block in randomized order. Participants heard 5 blocks,

for a total of 500 trials. Participants were allowed to take a short break after each

block and could continue to the next block when ready. The experiment started with

10 practice trials that only presented the stimulus with the lowest F1 and shortest

duration, a typical /A/, and the stimulus with the highest F1 and longest duration,

a typical /a:/. The experiment was run in the software PsychoPy (Peirce, 2007).

3.2.4 Behavioral Data Analysis

Before analyzing the response proportion and RT data together with the

LBA, we ran the more traditional analyses on both dependent measures separately.

The proportions of /a:/ responses were analyzed with a Bayesian logistic regres-

sion model and the RTs were analyzed with a two-way Bayesian ANOVA. Both

analyses included subjects as a random effect, meaning that each subject had their

own intercept, which was drawn from a normal distribution. Post-hoc Bayesian
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paired-samples t-tests were conducted where appropriate. The logistic regression

was carried out using the R Stan package (Stan Development Team, 2016) in R

(R Development Core Team, 2016) and the ANOVA analyses was carried out using

JASP (The JASP Team, 2016; Morey et al., 2014; Rouder et al., 2012).

The main reason for using Bayesian linear models instead of frequentist al-

ternatives is to allow calculation of Bayes factors (BF ), which we motivate below.

In addition, Bayesian models also allow for researchers to calculate posterior distri-

butions of parameters. Posterior distributions provide a range of plausible values as

well as their corresponding probabilities. They have a similar purpose to standard

errors of estimation, but do not make the assumption that estimation error is sym-

metrical and normally distributed. This assumption is often incorrect, especially

when dealing with data that are themselves not normally distributed.

For the behavioral data analysis (with the exception of the logistic regres-

sion), Bayes factors were used in place of conventional p values, as Bayes factors

are arguably more appropriate for assessing statistical evidence (see Wagenmakers,

2007). We refer the interested readers to Kruschke (2011) and Lee and Wagenmakers

(2013) for accessible introductions to Bayesian statistics for social scientists. Bayes

factors represent “the primary tool used in Bayesian inference for hypothesis testing

and model selection” (Berger, 2006, p. 378). They quantify evidence in favor of ei-

ther the null hypothesis or the alternative hypothesis as a ratio. For example, when

BF 10 = 5 the observed data are 5 times more likely under the alternative hypothesis

than under the null hypothesis. When BF 10 = .2 the observed data are 5 times more

likely under the null hypothesis than under the alternative hypothesis. To determine

the evidence for a particular effect (e.g., spectral quality), we calculated an inclusion
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BF (BF Inclusion). The BF Inclusion statistic represents the evidence in favor of models

that include a particular effect in relation to models that do not include the effect.

If we were testing whether spectral quality had an effect on RT, for instance, and

we obtained BF Inclusion = 5, then the data are 5 times more likely to come from a

model with a spectral quality effect than a model without a spectral quality effect.

Bayes factors greater than 3 or less than 1/3 will be considered positive evidence for

the alternative and null hypothesis, respectively (Kass & Raftery, 1995). And Bayes

factors less than 3 or greater than 1/3 will be considered inconclusive evidence for

both hypotheses.

The LBA models, which we describe next, and the logistic regression models

were evaluated on how well they predict future observations – the out-of-sample pre-

dictive error. The gold standard for estimating the out-of-sample predictive error of

a model is cross-validation (Geisser & Eddy, 1979). Cross-validation is computation-

ally expensive and so we used a computationally faster approximation: the widely

applicable information criterion (WAIC; Watanabe, 2010; Gelman et al., 2014). The

WAIC balances goodness of fit against model complexity. This measure is calculated

from a model fit value and a model complexity penalty value, which approximates

the number of effective parameters of the model. In this sense, WAIC is similar

to the BIC (G. Schwarz, 1978) and AIC (Akaike, 1974) measures, but WAIC ex-

tends these by quantifying model complexity as across-sample variability in model

fit rather than simply counting up the number of free parameters. The method we

used is described in detail by Vehtari et al. (2016). The model with the lower WAIC

value has better out-of-sample predictive error and is therefore the preferred model.
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3.2.5 Linear Ballistic Accumulator Analysis

We used hierarchical Bayesian methods to estimate the parameters of the

LBA model. The model fitting details are outlined in the Appendix B.

Here we give a brief description of the different LBA models we implemented.

Each LBA model had two accumulators, one corresponding to /A/ and another

corresponding to /a:/. Each model had the parameters mean drift rate v, response

threshold b, starting point variability A, non-decision time t0, and drift variability

s. The s parameter serves as the scaling parameter, which we set to 1 for the /A/

accumulator and estimated for the /a:/ accumulator. Having a scaling parameter

allows all other parameter values to be identified, because their values are now

relative to the scaling parameter (Donkin, Brown, & Heathcote, 2009). All other

parameters were estimated, but fixed across accumulators, with the exception of v

and response threshold b.

To help describe all models considered, we present an LBA visualization

in Figure 3.2. In the Figure, blue arrows represent changes in drift rate across

the duration values, green arrows represent changes in drift rate across the spectral

values, red arrows represent changes in non-decision time across the duration values,

and gray arrows represent changes in response threshold across vowels.

The first model we tested, the equal drift model, allowed v to change across

the spectral quality values and duration values. This model assumed that spectral

quality and duration influenced the speed of information processing, but their effects

were equal for /A/ and /a:/ responses. In Figure 3.2, we would see that blue arrows
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Figure 3.2: An example of a two-accumulator LBA model. The left panel shows
the accumulator corresponding to the /A/ response. The right panel shows the
accumulator corresponding to the /a:/ response. In each accumulator we present 4
sloped lines that represent mean drift rates for the 1st and 10th duration values and
1st and 10th spectral values. The changes in slope correspond to changes in mean
drift rate. The changes in mean drift that are induced by duration manipulations
are depicted by the blue arrows, with arrows pointing in the direction of the
change. Green arrows depict the spectral quality effects on mean drift rate. Red
arrows show the changes in non-decision time that are due to different vowel
durations – the further to the right the arrow extends the longer the non-decision
time. Gray arrows show the response threshold heights for each accumulator.

are of equal length, green arrows are of equal length, red arrows are of equal length,

and gray arrows are of equal length.

The second model, the unequal drift model, allowed v to vary across re-

sponses in addition to spectral quality values, and duration values. Like the equal

drift model, this model assumed that spectral quality and duration influence the

speed of information processing, however this effect was not fixed to be equal across

/A/ and /a:/ responses. In Figure 3.2, we would see that blue arrows are not equal

length and green arrows are not equal length, but red arrows and gray arrows are

still equal length. This model is theoretically interesting because it tests how much

each cue contributes to the recognition of /A/ or /a:/ individually. In contrast, tra-

ditional cue weighting measures based on categorization data only allow researchers
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to infer about the contribution of duration or spectral quality cues to the overall

vowel contrast, an approach that is captured by the equal drift model.

The third model we tested, the non-decision time model, was the same as

the unequal drift model with one extension. The non-decision time model also had

10 separate t0 parameters, one for each of the duration values. In Figure 3.2, we

would see that blue arrows are not equal length, green arrows are not equal length,

and the red arrows are not equal length, but gray arrows are of equal length. If longer

stimulus durations delay the processing of duration information, since the partici-

pant must wait for the vowel to offset, then we should observe that longer stimulus

durations induce systematic increases in non-decision processing time. Having 10

separate t0 parameters for each duration value allows for longer durations to in-

duce longer non-decision times. If we find evidence in favor of this model then this

suggests that lengthening the vowel may induce longer perceptual encoding times

(Reinisch & Sjerps, 2013).4 However, if we find evidence in favor of another model,

without different t0 parameters, then this suggests that longer durations do not

reliably delay the processing of duration information.

The final model we tested, the response bias model, was the same as the

unequal drift model, but it allowed response thresholds to change across accumula-

tors. This allowed the model to account for potential response bias in the data, i.e.,

responding /A/ more often than /a:/ overall. Response bias is typically captured in

response thresholds, unless the locus of bias is related to the stimulus (e.g., percep-

tual decision criterion, see White & Poldrack, 2014). In Figure 3.2, we would see

4Longer non-decision times could also mean longer motor response times, but we cannot disen-
tangle effects of perceptual encoding time and motor response time. Here, we assume that longer
durations do not have systematic effects on motor response time.
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that blue arrows are not equal length, green arrows are not equal length, and gray

arrows are not equal length, but red arrows are equal length.

Drift rates for each /a:/ response were defined as

va:SD = va: + βa:SXS + βa:DXD (3.1)

where va: represents the base drift rate for the /a:/ response. XS corresponds

to the Sth value spectral quality and XD corresponds to the Dth value duration.

The symbols XS and XD denote the stimulus spectral quality and duration steps,

respectively (i.e., not the raw values in Hz/ms, but ordinal scale values from 1-10

shown in column 1 of Table 3.1). βa:S and βa:D denote parameters that describe

the effect of the spectral and duration changes on drift rate for the /a:/ response,

respectively.

Drift rates for each /A/ response were defined as

vASD = vA + βAS(11−XS) + βAD(11−XD) (3.2)

where vA represents the base drift rate for the /A/ response. βAS and βAD denote

parameters that describe the effect of the spectral and duration changes on drift

rate for the /A/ response, respectively. Note that for the equal drift model, the

βAS and βAD are the same as the βa:S and βa:D estimates. The terms (11 − XS)

and (11 − XD) ensure that higher spectral quality and duration conditions, which
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correspond to atypical values for A, produce smaller drift rates compared to lower

spectral quality and duration conditions.

By estimating drift rate via Equations 3.1 and 3.2 we obtain four drift rate

coefficient estimates – βa:S, βa:D, βAS and βAD – which represent the effect that

our experimental cue manipulations have on the drift rate parameter. Note that

Equations 3.1 and 3.2 produce linear effects on drift rate, but linear increases in drift

rate also allow for non-linear effects on behavioral data (see e.g., van Ravenzwaaij,

Brown, & Wagenmakers, 2011, Fig. 2).

We compared four versions of our LBA model: the equal drift model, the

unequal drift model, the non-decision time model, and the response bias model

using WAIC. In addition, we used Bayesian predictive p-values to statistically test

for differences between the posterior distributions of the drift coefficient parameters

(Meng, 1994). We used a criterion of .05 to determine if two posterior distributions

are overlapping. Specifically, we calculated the difference between the two spectral

quality posteriors, the two duration posteriors, the spectral /a:/ and the duration

/a:/ posteriors, and the spectral /A/ and the duration /A/ posteriors. We calculated

the probability (p-value) that the resulting difference distributions were equal to or

less than 0. A p-value “is a measure of discrepancy between the observed data and

the posited assumptions, among which the hypothesis being tested is only a part”

(Meng, 1994, p. 1144). Thus, similar to the traditional p-value, a low predictive

p-value indicates a low probability of observing this or more extreme data if the null

hypothesis were true.
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3.3 Results

The R code for all analyses and experimental data are available online at

this paper’s associated Open Science Framework page https://osf.io/hp9xt/.

3.3.1 Behavioral Data Results

We measured the choice proportion of participants for the two typical vow-

els: the minimum-duration step 1 and minimum-spectral step 1 stimuli (expected

response was /A/) as well as the maximum-duration step 10 and maximum-spectral

step 10 stimuli (expected response was /a:/). Overall, the expected response was

made 97% of the time, which suggests there was high consensus for the extreme

stimuli. The percentage of expected responses ranged from 70% to 100% across

participants. No participants were excluded from the analysis. Overall, there was

a response bias as participants responded /A/ 55% of the time, which we explore

further in the LBA analysis.

Figure 3.3 shows the effects of both the duration and spectral manipula-

tions as a heat map. The top right corner shows stimuli with typical /a:/ cue

information (maximum-duration 10 and maximum-spectral 10 ) and the bottom left

corner shows stimuli with typical /A/ cue information (minimum-duration step 1

and minimum-spectral step 1). This plot shows the rate of change from responding

/A/ to responding /a:/ as a function of both the duration and spectral quality ma-

nipulations. As we move along the y-axis we can observe the change across spectral

https://osf.io/hp9xt/


Chapter 3. A Linear Ballistic Model of Vowel Perception 56

quality and as we move along the x-axis we can see the change across duration. The

diagonal of the graphic visualizes the listeners’ perceptual boundary.
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Figure 3.3: A heat map showing the overall effects of duration and spectral
quality on categorization. The y-axis displays the spectral steps and the x-axis
displays the duration steps, where each square represents a step. The text in
the legend of this figure contains the percentage that participants responded /a:/
overall. The top right corner shows that participants predominantly respond /a:/
to stimuli with typical /a:/ values. The bottom corner shows that participants
predominately response /A/ to stimuli with typical /A/ values.

Figure 3.4 shows the effects of spectral quality and duration on mean RT as a

heat map. The top right corner shows stimuli that have typical /a:/ cue information

and the bottom left corner shows stimuli that have typical /A/ cue information.

We determined the effect of spectral cues and duration cues on categoriza-

tion by subjecting the proportion of /a:/ responses to a Bayesian logistic regression.

One coefficient of the regression corresponds to the spectral changes (βSpectral) and

another to the duration changes (βDuration), and these represent each cue’s influence

on categorization. We regressed choice proportion on duration, spectral quality, and

the interaction between the two. The model with main effects for both duration and
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Figure 3.4: A heat map showing the effects of cue manipulation on RT, which
has been collapsed over response. The y-axis displays the different spectral steps
and the x-axis displays the different duration steps. The top right corner shows
fast RTs for stimuli with typical /a:/ values. The bottom left corner shows fast
RTs for stimuli with typical /A/ values.

spectral quality and an interaction between the two had the lowest WAIC (12965.2).

The null model with no effects, the duration only, spectral quality only, and the

model with both main effects only had WAIC values of 20548.4, 19210.4, 15059.9,

and 12970.5, respectively.

The spectral manipulation had a larger effect on categorization than the

duration manipulation. Each step increase in duration increased the log odds of

responding /a:/ by βDuration = .403 [95% Credible Interval: 0.389, 0.449]. The

percentage of /a:/ responses for the 1st duration step was 22.9% and this increased

to 66.4% for the 10th duration step (t-test: BF 10 = 1.24×107). Each step increase

in spectral quality increased the log odds of responding /a:/ by βSpectral = .664 [95%

Credible Interval: 0.650, 0.709]. The percentage of /a:/ responses for the 1st spectral

quality step was 11.7% and this increased to 84% for the 10th spectral quality step
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(t-test: BF 10 = 2.66×1011). The interaction between spectral quality and duration

showed that for the 1st duration step, the percentage of /a:/ responses increased from

20% to 58% from the 1st to the 10th spectral quality step (t-test: BF 10 = 1.20×107).

For the 10th duration step the percentage of /a:/ responses increased from 28% to

96% from the 1st to the 10th spectral quality step (t-test: BF 10 = 2.95×107).

We regressed RTs on duration, spectral quality, response, and all interac-

tions and found main effects for response (BF Inclusion > 1015), duration (BF Inclusion =

2.42×1011), and spectral quality (BF Inclusion > 1015). Moreover, the model included

an interaction between spectral quality and response (BF Inclusion > 1015), duration

and response (BF Inclusion = 303), and spectral quality and duration (BF Inclusion =

112). RTs for the 1st spectral quality step were faster than RTs for ambiguous spec-

tral quality steps, such as 5 (t-test: BF 10 = 2.16) or 6 (t-test: BF 10 = 10.99), but

the difference in RTs between the 1st and 5th spectral quality step is inconclusive.

RTs for the 10th spectral quality step were faster than RTs for the 5th (t-test: BF 10

= 42.98) or the 6th spectral quality step (t-test: BF 10 = 165.95). RTs for the 1st

duration step were equal to RTs for ambiguous duration steps, such as 5 (t-test:

BF 10 = .203) or 6 (t-test: BF 10 = .226). RTs for the 10th duration were slower than

RTs for the 5th (t-test: BF 10 = 1.88) and 6th (t-test: BF 10 = .80) duration step,

but the evidence for these differences was inconclusive.

As shown in the left panel of Figure 3.5, there was a crossover interaction

between spectral quality and response. The evidence for differences in RT between

the /A/ and /a:/ responses for the 1st spectral quality was inconclusive (t-test: BF 10

= 1.05). But, RTs for /a:/ responses were faster than /A/ responses for the 10th

spectral quality (t-test: BF 10 = 64.47). As shown in the right panel of Figure 3.5,
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RTs for /A/ responses were faster than RTs for /a:/ responses for the 1st duration

step, but the evidence was inconclusive (t-test: BF 10 = 2.40). In contrast, RTs for

/A/ responses were slower than RTs for /a:/ responses for the 10th duration step

(t-test: BF 10 = 14.63). RTs for /a:/ responses were slower for the 5th duration step

(t-test: BF 10 = 0.949) and faster for the 6th duration step (t-test: BF 10 = 0.899),

but the evidence was inconclusive for both. There were no differences in RT between

the /a:/ and /A/ responses for the 5th (t-test: BF 10 = 0.19) and 6th (t-test: BF 10

= 0.29) duration steps. The absolute difference in RTs for the 1st and 10th spectral

qualities was larger for stimuli with longer duration values (114ms) than shorter

duration values (108 ms), but the evidence was ambiguous (t-test: BF 10 = 1.38).
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Figure 3.5: The interaction between the spectral quality and response (left)
and duration and response (right). The /A/ responses are plotted in red and the
/a:/ responses are plotted in blue. Interval bars represent 1 standard error of the
mean.
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3.3.2 Linear Ballistic Accumulator Results

We found that drift rates (speed of processing) were affected more by spec-

tral quality than by duration. We also found that the effects of spectral quality

on speed of processing were not equal for both for phoneme responses. Given the

findings of McMurray et al. (2008) and Reinisch and Sjerps (2013), who found that

cues that appeared later in the signal affected eye-tracking behavior later in a trial,

we expected longer non-decision times for stimuli with longer vowel durations – in

particular, because participants were assumed to not be processing duration infor-

mation until the vowel offset. However, our analysis showed that increased duration

of vowels did not produce any systematic increases in non-decision processing time.

Specifically, to compare the equal drift, unequal drift, and non-decision time

models we assessed which model was selected by WAIC. The unequal drift model

(WAIC = 629.2) was preferred over the equal drift model (WAIC = 918.7), the

non-decision time model (WAIC = 1083.2), and the response bias model (WAIC =

946.9). The unequal drift model also provided good fits to the empirical data, which

are presented in the Appendix B.

Figure 3.6 shows the group level mean posteriors of spectral and duration

drift coefficients from the unequal drift model. Bayesian p-values suggest that

changes in spectral cues induced larger changes in drift rate than duration. The

effects of spectral quality on drift rates are not identical for both vowels, where

changes in spectral quality affect drift rates more for /a:/ than /A/ responses. The

effects of duration on drift rate are equal for both vowels.
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Figure 3.6: Group-level mean posterior distributions for mean drift rate β for
both the /A/ and /a:/ responses.

The group-level mean posteriors for all other LBA parameters are shown

in Table 3.2. The base drift rate for /A/ is higher than for /a:/. This explains the

overall bias we observed, where participants responded /A/ 55% of the time. We

tested whether the bias is in response thresholds, instead of drift rate, by fitting

the response bias model with separate thresholds for each vowel. The response bias

model performed worse compared to the unequal drift model. Therefore the bias is

better captured in drift rate.

The combined effect of base drift rate and spectral quality drift coefficients

can be better understood by looking at the mean drift rates in each of the 10

spectral quality steps. To calculate these mean drift rates we inserted the group-level

mean posterior median (see Table 3.2) for the base drift rate and drift coefficient

parameters into Equations 3.1 and 3.2. This resulted in the mean drift rates in each

of the 200 conditions. To arrive at the mean drift rates in each of the 10 spectral

quality steps we averaged over the duration conditions. Zooming in on the different
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Table 3.2: Group-level Mean Posteriors.

Parameter Median Credible Interval (2.5%, 97.5%)

b 2.125 (2.417, 2.720)

A 0.953 (0.841, 1.062)

s 0.911 (0.866, 0.958)

t0 153ms (61ms, 192ms)

vA 2.70 (2.41, 2.98)

va: 2.37 (2.10, 2.65)

βa:S 0.306 (.252, .360)

βa:D .140 (.103, .176)

βAS .215 (.174, .256)

βAD .132 (.100, 1.64)

effects of drift rate across spectral quality for /A/ and /a:/ (cf. blue posterior

distributions in Figure 3.6), Figure 3.7 shows that for stimuli with atypical spectral

quality values, which is the 1st step for /a:/ and the 10th step for /A/, participants

had higher drift rates for /A/ compared to /a:/. The difference between mean drift

rates between the two vowels decreases as the stimuli approach the typical spectral

quality.

3.4 Discussion

In this study, Dutch listeners categorized sounds as /A/ and /a:/ in an

experiment in which we manipulated the spectral and duration properties of the

sounds. Both the categorization and the response times (RTs) of participants were

recorded and independently analyzed using Bayesian linear models. We then applied
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Figure 3.7: Mean drift rates across the 10 spectral qualities for /A/ (red) and
for /a:/ (blue). Mean drift rates are shown along the y-axis. Along the x-axis are
the 10 different spectral quality values ranging from the atypical values, which is
the 1st value for /a:/ and the 10th value for /A/, to the typical values, which is
the 10th value for /a:/ and the 1st value for /A/.

a mathematical model of decision-making – the linear ballistic accumulator model

(LBA; S. D. Brown & Heathcote, 2008) – which analyzed both streams of data

simultaneously. The model allowed us to investigate how changes in acoustic cues

affect latent cognitive processes that underpin phoneme decisions.

In terms of behavioral data, we were able to replicate the relatively heavy

spectral cue weighting compared to duration that is typically observed in vowel cat-

egorization tasks involving the Dutch contrast between /A/ and /a:/ (Nooteboom

& Cohen, 1984; van Heuven et al., 1986; Escudero et al., 2009; van der Feest &

Swingley, 2011; Reinisch & Sjerps, 2013). The LBA analysis addressed fundamen-

tal issues that arise when using categorization data to learn about the mapping
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between acoustic cues and phonemes. The model posits an evidence accumulation

process, which helps explain how continuous acoustic information can result in dis-

crete phoneme decisions. With the LBA we observed that changes in spectral and

duration cues lead to changes in drift rates (i.e., speed of information processing)

for both /A/ and /a:/ responses. In addition, changes in spectral quality had larger

effects on the behavioral data than changes in duration and this was driven by differ-

ences in speed of information processing. Furthermore, when the stimuli had more

atypical spectral qualities, which is a short duration and darker spectral quality for

/a:/ or a long duration and clearer spectral quality for /A/, listeners accumulate

evidence faster for /A/ responses compared to /a:/. This asymmetry in processing

speed explains why listeners’ responded /A/ 55% of the time.

We also argued that if duration processing can only start at vowel offset,

as suggested by Reinisch and Sjerps (2013), we would observe relatively longer per-

ceptual encoding times for longer vowel durations. Non-decision time in the LBA is

made up of the time needed to perceptually encode the stimuli and execute a motor

response. If we assume that longer sound durations have no systematic effects on

motor response times, then changes in non-decision time would be due to differences

in perceptual encoding time. However, we found that different vowel durations did

not affect listener’s non-decision processing time.
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3.4.1 What Precedes an Evidence Accumulation Process?

With the LBA we provide part of the picture of how continuous acoustic

information leads to discrete phoneme decisions. In the past, researchers used cat-

egorization data to look at associations between cues before-processing and overt

responses, which overlooks the decision processes required for categorization. With

the LBA we specifically investigate the decision processes, showing that the relatively

heavy weighting of spectral quality compared to duration is not merely a result of

the timing of cue availability, but a property of the decision-making process.

While the LBA analysis presented here is a considerable advance on tradi-

tional separate analyses of response proportion and RT, it does not explicitly explain

how continuous acoustic information becomes evidence that drives the decision pro-

cess. Recall that the drift rate of the decision process is considered a measure of

the quality of the evidence. But what is the evidence to this accumulation process?

One possibility is to complement the LBA with a formal model of a cue mapping

process that takes the continuous acoustic information and maps it onto exemplar

clusters or discrete representations of phonetic categories. The output of this cue

mapping model could serve as evidence that inputs into the LBA processes (see

Ratcliff, Gomez, & McKoon, 2004, for a similar concept in lexical decision-making).

The drift rate in the LBA would then be a measure of the speed, efficiency, or

certainty with which a certain acoustic cue is mapped onto a phoneme category.

In summary, the continuous acoustic information enters the cognitive system, the

acoustic information then maps onto a phonetic category, the mapping processes

outputs evidence that enters an LBA process, which accumulates evidence until a
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response threshold is reached and an overt response is made.

But what could cause differences in speed of information processing? In

our case, we found behavioral evidence that spectral quality is weighed heavier than

duration for the /a:/ and /A/ contrast. The LBA analysis showed that changes in

spectral quality cause larger changes in speed of processing than changes in duration.

Perhaps the differences in drift rate were due to spectral quality cues being mapped

more efficiently or more certainly onto the categories /a:/ and /A/ compared to

duration cues. Similarly, the higher spectral quality drift rate for /a:/ than for /A/

suggests that the mapping between spectral quality information and /a:/ provides

better evidence than the mapping between spectral quality and /A/. Finally, the

higher drift rate for atypical values of /A/ than for atypical values of /a:/ suggests

that the mapping between atypical acoustic cues and categories is more efficient

or more certain for /A/ than it is for /a:/. Asymmetric mappings between cue

values and categories could be instrumental in explaining asymmetries in vowel

perception (Polka & Werker, 1994), as well as provide a phonetic basis for the

notion of phonological under-specification (Lahiri & Reetz, 2010).

3.4.2 Future Directions

In this study, we investigated duration and spectral quality, which are cues

that are processed separately and by different pathways in the brain (e.g., Zatorre

& Belin, 2001). The LBA model is not constrained by this independence of acoustic

cues. For instance, researchers could examine phoneme decisions about sounds that
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are cued by two spectral dimensions (F1 and F2) rather than one spectral and one

temporal dimension.

Moreover, the LBA can be used to model how listeners deal with correlated

acoustic dimensions, such as F1 and inherent vowel duration (House & Fairbanks,

1953; Peterson & Lehiste, 1960; Lehiste & Lass, 1976) or F2 and spectral tilt for

/i/ and /u/ (Ito, Tsuchida, & Yano, 2001). These correlations can be modeled

by the LBA by changing the way parameters vary across conditions. For instance,

if spectral quality and duration were positively correlated, Equations 3.1 and 3.2,

which estimate drift rates for each condition, could be extended by including an

interaction term. The mean drift rates for each /a:/ response could be defined as

va:SD = va: + βa:SXS + βa:DXD + βa:SDXSXD (3.3)

where βa:SD denotes the parameter that describes the interaction effect of the spec-

tral and duration changes on mean drift rate for the /a:/ response. A formal model

comparison (i.e., comparing a model fit with and without the interaction terms in

their ability to fit the data) can shed light on the way drift rates change with both

dimensions. Note that this approach allows one to investigate the effect of both

dimensions independently, even though they covary in practice. The LBA analy-

sis with the added interaction terms can be incorporated for phonetic distinctions

cued by one dimension, two dimensions, three dimensions, or more by augmenting

Equation 3.3 with the relevant terms.

The LBA could also be used to address other long standing questions in
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speech perception. For example, the literature so far does not contain a definitive

explanation of an asymmetry first observed by Nooteboom and Doodeman (1980, p.

277): reducing the duration of /a:/ can lead to listeners responding 100% /A/; yet,

increasing the duration of /A/ does not lead to a consistent /a:/ response. Van der

Feest and Swingley (2011) proposed two possible explanations of this phenomenon.

Firstly, lengthening sounds might show weaker effects because it occurs in natural

language as prosodic effects, such as the application of emphatic stress (Ko, Soder-

strom, & Morgan, 2009). Secondly, lengthening sounds may facilitate perceptual

access to vowel quality, whereas the spectral quality in shortened vowels may be

harder to evaluate, leading to reliance on duration for short vowels. The LBA could

model the second explanation by letting the drift rate for spectral quality change

within a trial as the stimulus duration increases. Fortunately, a non-constant drift

rate over the course of the trial is something that is possible to explore in the LBA

(Holmes, Trueblood, & Heathcote, 2016).

Allowing non-constant drift rate within a trial opens the door to investi-

gating how time-variant acoustic cues cause changes in LBA parameters that also

change over time. For example, the cues to pre-voiced /b/ become available in a

sequence: first pre-voicing, which provides information about phonological voicing,

then the burst, which provides information about the place of articulation and voic-

ing, and then the formant trajectories into the vowel, which listeners rely on most

to determine place of articulation. Another example of a time-variant acoustic cue

is vowel-inherent spectral change (Morrison, 2013). These dynamic cues can be

mapped onto latent cognitive processes by linking them to dynamic LBA parame-

ters. Dynamic LBA parameters may be able to disentangle the effects of cues that
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are available earlier (in time) in the speech from cues that are simply mapped more

strongly to phonetic categories.

Overall, our study demonstrates a successful and novel application of se-

quential sampling models to phoneme categorization tasks. These models allow

researchers to investigate latent cognitive processes by analyzing behavioral data.

Given the merit of using sequential sampling models, we hope to see them applied

to other research questions embedded in the speech perception literature, some of

which we have outlined here.
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4.1 Introduction

The lexical-decision task, which involves identifying letter strings as words

or non-words, has been used extensively in psycholinguistic research to understand

reading, and to develop cognitive models (e.g., Grainger & Jacobs, 1996; Coltheart,

Rastle, Perry, Langdon, & Ziegler, 2001; Norris, 2006). Discrimination of words from

non-words in the lexical-decision task has typically been understood using signal-

detection theory (SDT, e.g., Norris, 1986; Balota & Chumbley, 1984). In SDT,

both words and non-words are assumed to have continuously distributed evidence

of word-likeness, with observers using a criterion on the evidence axis as a basis for

their decision.

Simple elaborations of SDT (e.g., Balota & Spieler, 1999) do not correctly

predict the shapes of response time (RT) distributions (Yap, Balota, Cortese, & Wat-

son, 2006) in an “information controlled” lexical-decision task, where participants

control the time at which they make their choice. For this reason, researchers have

applied the Diffusion Decision Model (DDM; Ratcliff, 1978) to the lexical-decision

task (Ratcliff, Gomez, & McKoon, 2004). The DDM is an sequential sampling

model that can account for both choice proportion and RTs. Decisions between

two alternatives are based on the accumulation of noisy evidence from a stimulus.

Evidence accumulates until one of two decision boundaries is reached and the as-

sociated response is made. The mean rate, or drift-rate, of evidence accumulation

varies from trial to trial. This trial-to-trial variability in drift-rate is analogous to

the continuously distributed variability of evidence in SDT (Ratcliff, 1978, 1985).
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Previous fits of the DDM to lexical-decision data have assumed equal drift-

rate variability for both words and non-words (Ratcliff, Gomez, & McKoon, 2004;

Wagenmakers et al., 2008). However, studies incidentally using lexical decisions

to look at practice effects (Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers,

2009; Dutilh, Krypotos, & Wagenmakers, 2011) and post-error slowing (Dutilh et

al., 2012) have reported larger drift-rate variability for words than non-words. More-

over, the Retrieving Effectively from Memory model of lexical-decision (REM–LD;

Wagenmakers et al., 2004) makes the a-priori prediction that evidence-strength vari-

ability differs across stimulus classes. Note, however, that REM-LD has only been

applied to “time-controlled” lexical-decision tasks, where participants must respond

at a deadline specified by the experimenter.

Taken together, these findings warrant an investigation of whether evidence

variability differs among words and non-words of different types in the lexical-

decision task. To do so, we fit the DDM to previously published information-

controlled lexical-decision data sets from Ratcliff, Gomez, and McKoon (2004) and

Wagenmakers et al. (2008). We also compare the DDM based evidence mean and

variability estimates to predictions that we derive from REM–LD.

4.1.1 The Diffusion Decision Model

The DDM provides a comprehensive account of data from the lexical-decision

task (Ratcliff, Gomez, & McKoon, 2004), not only for the choices made, but also

for the associated RTs. In the DDM, evidence begins to accumulate at the starting
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point z, which is sampled from a uniform distribution with width sz. Evidence accu-

mulation is noisy, with a drift-rate that is sampled from a normal distribution with

mean v and standard deviation η. Evidence continues to accumulate until it hits

either an upper boundary (a, corresponding to a ‘word’ response) or a lower bound-

ary (0, corresponding to a ‘nonword’ response). The boundary that is reached first

determines the decision, and the time taken to reach the boundary is the decision

time. Non-decision time, Ter, which quantifies the time taken to encode stimuli and

execute a motor response, is estimated as the remainder of each RT. Non-decision

time is assumed to have a uniform distribution with range st. Figure 4.1 illustrates

the DDM.

Ratcliff (1978) introduced drift-rate variability to model item differences

in a recognition-memory task, but it is also useful because it enables the DDM to

predict the common finding of slower error than correct responses. When the start

point is unbiased, a somewhat counter-intuitive prediction for a diffusion process

with no trial-to-trial variability is that correct and error decision times have equal

distributions. When drift-rate variability is included, lower drift-rates, which cause

slow decisions, are more likely to produce errors, while higher drift-rates, which

cause fast decisions, are more likely to produce correct responses. Slow errors result

because, on average, correct responses have faster drift-rates than incorrect responses

(Ratcliff & McKoon, 2008).

Using the DDM, Ratcliff, Gomez, and McKoon (2004) modeled the effects

of different stimulus classes in the lexical-decision task using differences in mean

drift-rate alone. Higher frequency words had larger drift-rates, which accounted for
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their greater accuracy and faster RT. However, all item types were assumed to have

the same drift-rate variability.
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Figure 4.1: DDM conceptualization of a two choice decision between ‘word’ and
‘non-word’ in the lexical-decision task. The top panel shows distributions of drift-
rates for both words and non-words. The drift-rate on each trial is sampled from
a drift distribution.

4.1.2 From Signal Detection to Diffusion Decision Models

of Evidence Variability

SDT is often fit to receiver operating characteristic (ROC) data. ROCs plot

the hit rates as a function of false alarm rate across different levels of bias. Bias can
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be manipulated in a number of ways. The most frequently used method is confidence,

assuming that different confidence ratings are produced by placing multiple criteria

on the evidence-strength axis. SDT predicts a curvilinear ROC, but z-transforming

hit rates and false alarm rates produce a linear (“zROC”) plot with a slope equal

to the ratio of the standard deviation (SD) of the noise distribution and the signal-

plus-noise distribution. Therefore, a zROC slope different from 1 suggests unequal

variance evidence distributions.

Jacobs, Graf, and Kinder (2003) extended the multiple read-out model

(MROM) of lexical-decision to allow it to generate ROC functions. They found that

in a time-controlled lexical-decision task with a 500ms response deadline, MROM

predicted zROCs slopes of 1, which suggests equal evidence variability for words and

non-words (see also S. D. Brown & Steyvers, 2005).

However, the notion that zROC slopes equal the ratio of SDs in evidence

strength has been contested by Ratcliff and Starns (2009). Ratcliff and Starns used

a race model (RTCON) to explain both confidence judgments and RT. Similar to

the DDM, decisions in RTCON are made on the basis of accumulation of noisy

evidence to a response boundary. RTCON assumes several additional sources of

variability beyond that of SDT, including variability in response boundaries for each

potential confidence response. Because the zROC functions generated by RTCON

are dependent on multiple sources of variability, Ratcliff and Starns suggested that

zROC slopes cannot be used as a valid measure of the ratio of SDs in evidence

strength because it does not take account of RT.

In a two-choice recognition memory task, Starns and Ratcliff (2014) showed
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that the DDM could be used to estimate the ratio of evidence SDs in a way that takes

account of RTs, but without requiring ROC measurement (see also Starns, 2014).

We aim to use the DDM in a similar manner to investigate evidence variability in the

lexical-decision task, and to compare these results to the predictions of REM–LD,

addressing not only word vs. non-word variability, but also variability differences

among different types of words and non-words. Before we present our analysis,

we will briefly overview the REM–LD model, and investigate its predictions about

evidence variability.

4.1.3 Retrieving Effectively from Memory – Lexical Deci-

sion

In REM–LD, lexical representations for words are vectors of features. The

elements of these vectors can encode semantic, phonemic, and orthographic infor-

mation about the words that are experienced.1 During a lexical-decision task the

features of the probe are matched in parallel to features of lexical traces. The num-

ber of features that are available for this matching process increases as the probe

is processed for longer. Not having all features available for the matching process

results in there being mismatching features as well as matching features, even when

the probe is the same as the trace.

The number of active features, and the number of matches between the

probe and traces, are binomially distributed. REM–LD computes the probability

that r probe features are active given some amount of processing time, and from

1The REM–LD model also considers contextual information, however, Wagenmakers et al.
(2004) advocates that contextual information is less relevant in lexical-decision.
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that, calculates the likelihood of obtaining the observed number of matches between

a memory trace and the probe when the probe is the same as the trace (i.e., the

stimulus is a word). It then computes the likelihood of the observed number of

matches given that the trace is not the same as the probe (i.e., the stimulus is a

non-word). The two types of likelihoods are used to calculate odds ratios that are

averaged over all memory traces, yielding a posterior odds ratio that is used to

predict the probability of responding ‘word’ vs. ‘non-word’ in a deadline paradigm.

REM–LD and the DDM both posit that evidence in the decision process

accumulates over time. Indeed, Wagenmakers et al. (2004) note that REM—LD

is closely related to the random walk model (e.g., Link & Heath, 1975), which is a

diffusion process in discrete time. Wagenmakers’ et al. did not extend the REM–LD

model to an information-controlled paradigm. There are several ways this might be

achieved. For example, if evidence in the DDM is equated with the logarithm of

the REM–LD posterior odds calculated over some fixed encoding time (which has

an asymptotic normal distribution), then REM–LD might serve as a “front-end”,

providing an input to the DDM (for a similar idea see Ratcliff, Gomez, & McKoon,

2004).

We used the equations from Wagenmakers et al. (2004) to derive deadline

predictions of REM–LD about the log posterior odds ratio distributions of the stim-

ulus classes used in Ratcliff, Gomez, and McKoon (2004) and Wagenmakers et al.

(2008) (for details see Appendix C). These categories include words of high-frequency

(HF), low-frequency (LF), and very-low-frequency (VLF), along with two types of

non-words, pseudo-words (PW), and random letter (RL) strings.
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The mean (top left panel) and SD (top right panel) of the log posterior

odds ratio distributions are plotted in Figure 4.2. For all deadlines greater than

250ms, which is the starting point for the decision process, the SD is largest for HF,

followed by LF, RL, VLF, and finally PW stimuli. The variability of log posterior

odds ratio distributions is determined by variability in its constituent odds ratios.

For non-words the odds-ratio distribution comes from traces that are not the same

as the probe, with an SD that decreases as the probability of a match increases.

As the probability of a match is less for RL than the word-like PW stimuli, the

latter have a smaller SD. For words the SD is strongly influenced by the lexical

trace corresponding to the probe word, which causes the odds ratio distribution to

be skewed. Higher frequency words skew the distribution more, producing a more

variable odds-ratio distribution. Therefore, although REM–LD generally predicts

greater variability with a larger evidence mean, there is a dissociation for RL stimuli,

which have the lowest mean but the second highest SD.

Although we outlined one fairly direct way of linking REM–LD to the DDM,

there are clearly alternatives, such as Wagenmakers et al.’s (2004) suggestion that

moment-to-moment variability in REM–LD directly causes moment-to-moment vari-

ability in within-trial evidence accumulation. This also implies that, in contrast to

the DDM’s assumptions, evidence is non-stationary, growing in both mean and vari-

ance over the course of accumulation. Exploring this alternative in detail, let alone

quantitatively fitting them to data, would be a major undertaking. Instead, we

tested the predictions made by REM–LD about the mean and SD of the evidence

distribution in a qualitative rather than quantitative way, by comparing its predicted

ordering to the ordering of η estimates from the DDM model fits.
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4.1.4 The Present Study

We examine whether evidence variability is different across stimulus classes

via model selection. Specifically, we test whether a model with separate rate-

variability (η) parameters for each stimulus class accounts for data better than a

model with only one η for all stimulus classes. We then extract the estimates of rate

means (v) and η from the former model, and compare them to REM–LD’s predicted

ordering.

4.2 DDM Analysis

We used hierarchical Bayesian methods to estimate the parameters of the

DDM; the fitting routine, the specific model parameterization for each data set, and

the results of a parameter-recovery study validating our estimates are provided in

Appendix C.

4.2.1 Data Sets

Table 4.1 provides data-set details. All data sets contained a word frequency

manipulation. In data set 1 (Experiment 1; Wagenmakers et al., 2008), participants

were instructed to respond either quickly or accurately. For data set 2 (Experiment 2;

Wagenmakers et al., 2008), one condition contained 25% word stimuli and another

condition contained 75% word stimuli. Data sets 3-5 (Experiments 1,2, and 4,

respectively, from Ratcliff, Gomez, & McKoon, 2004) all contained just a word
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Figure 4.2: The top row plots the mean (top left panel) and SD (top right
panel) of the log-posterior-odds-ratio distributions from the REM–LD model at
four different deadlines (250ms, 500ms, 750ms, 1000ms). HF = high-frequency,
LF = low-frequency, VLF = very-low-frequency, and PW = pseudo-word, and
RL = random letter strings. The minimum processing time was 250ms, and the
rate of increase in probability of activation was .0025. The probability of a feature
match when encoding the same item was HF = .85, LF = .75, and VLF = .65. The
probability of a feature match when encoding a different item was PW = .5, and
RL = .35. The bottom row plots the drift-rate mean (v, bottom left panel) and
SD (η, bottom right panel) group-level mean posterior distributions from DDM
fits to the five lexical-decision experiments. The distributions for each stimulus
class are the concatenation of the posterior distributions across all 5 experiments.
The posterior distributions are displayed as violin plots, which show the median
of the posterior (black dot) and a rotated kernel density mirrored on either side.
The violin plots are truncated to contain the 95% highest density interval. The
stimulus class labels along the x-axis are ordered from left-right in the same order
as REM–LD’s predicted ordering from highest to lowest.
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frequency manipulation, but the researchers changed the characteristics of the non-

word stimuli, using either pseudo-words (pronounceable letter strings in data-set 3,

and created by randomly replacing all vowels in words by other vowels, in data sets

1 and 2), or unpronounceable random-letter strings (data-sets 4 and 5).

Table 4.1: Data sets.

Data Set Source N Obs. Variables

1 Wagenmakers et al. (2008) Exp1. 17 1844 Emphasis (Speed or Accuracy)

Word Frequency (high, low, very low, pseudo-words)

2 Wagenmakers et al. (2008) Exp.2 19 1915 Proportion (25% Word or 75% Word)

Word Frequency (high, low, very low, pseudo-words)

3 Ratcliff et al. (2004) Exp.1 16 2057 Word Frequency (high, low, very low, pseudo-words)

4 Ratcliff et al. (2004) Exp.2 14 2070 Word Frequency (high, low, very low, random letter strings)

5 Ratcliff et al. (2004) Exp.4 17 1477 Word Frequency (high, low, random letter strings)

Note. N = number of participants; Obs. = the mean observations for each participant.

4.2.2 Model Selection

We selected among models using WAIC, a measure of out-of-sample predic-

tion error (Watanabe, 2010; Gelman et al., 2014), where lower values indicate better

out-of-sample prediction. WAIC is similar to AIC (Akaike, 1974), but also takes

account of functional-form complexity, and is more stable than the most common

model-selection metric for hierarchical Bayesian models, DIC (Spiegelhalter et al.,

2002).

We compared two versions of the DDM: the “equal model” and the “unequal

model”. The equal model had one η parameter for all different stimulus conditions,

whereas the unequal model had a separate η parameter for each. Table 4.2 shows that

the unequal model is substantially preferred for data sets 1-3 and clearly preferred for

4-5. Note that a difference in WAIC of greater than 3 provides positive evidence and
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a difference of 10 or more strong evidence. We now examine whether the preferred

models provide a good account of the data, in which case their parameters provide

an accurate understanding of performance in the LDT.

Table 4.2: WAIC results for the equal and word frequency DDMs.

Data Set Source Equal Model Unequal Model Equal - Unequal

1 Wagenmakers et al. (2008) Exp1. -16154.9 -16320.7 165.8

2 Wagenmakers et al. (2008) Exp.2 -21897.0 -22022.4 125.4

3 Ratcliff et al. (2004) Exp.1 -20440.7 -20616.8 176.1

4 Ratcliff et al. (2004) Exp.2 -33395.4 -33402.3 6.9

5 Ratcliff et al. (2004) Exp.4 -29059.4 -29066.9 7.5

Note. Bold WAIC values indicate the preferred model for the corresponding data set.

4.2.3 Model Fit

We checked fit by generating posterior-predictive data from the unequal

models, simulating 100 data sets of the same size as the empirical data from 100

parameter-vector samples from joint-posterior distributions for each participant in

each experiment. Figure 4.3 plots summaries of the observed and predicted data.

To summarize the RT distributions, we present five quantile estimates (10%, 30%,

50%, 70% and 90%). The 10%, 50%, and 90% quantiles represent the leading edge,

median, and tail of the distribution, respectively. These plots also indicate the

proportion of correct (green) and incorrect (red) responses along the y-axis.

The top two panels in Figure 4.3 show empirical and predicted values for

data sets 1 and 2 from Wagenmakers et al. (2008); the unequal model fits both

well. The middle two panels and the bottom panel of Figure 4.3 displays the same

for data sets 3-5 (Ratcliff, Gomez, & McKoon, 2004). The fits are good except for
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consistent misses of the tail of the error RT distribution. This misfit is likely due

to the low rate of errors and relatively high variability in the 90% quantile for error

RTs. However, average speed of error vs. correct RT is still captured well.

4.2.4 Drift Rate Parameters

Figure 4.2 shows the mean of the posterior distributions of the group-level

mean drift-rate and η estimates from the unequal DDM. The distributions for each

stimulus class are the concatenation of the posterior distributions across all 5 exper-

iments. The ordering of mean drift-rates are in agreement with REM–LD’s evidence

means within words and within non-words. The ordering of η for the DDM is

mostly in agreement with the evidence variability predictions of REM–LD, with the

exception of LF words. Drift variability was highest for HF words, followed by RL,

VLF, LF, then PW. REM–LD predicted that evidence variability was highest for

HF words, followed by VLF, LF, RL, then PW.

We used Bayesian predictive p-values to assess the probability that the

difference between two posteriors is equal to or less than 0 (Meng, 1994). Small p-

values in Table 4.3 suggest that the DDM and REM-LD are in agreement and larger

p-values suggest that the two models are in disagreement. They mostly agree, except

in regards to LF, RL, and VLF stimuli. The predicted order is reversed between LF

and RL, and either reversed or equivocal between VLF and LF or RL.
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Figure 4.3: Defective cumulative distribution plots of the predicted RTs from
the unequal model and empirical RTs for each stimulus condition. HF = high-
frequency, LF = low-frequency, VLF = very-low-frequency, and PW = pseudo-
word, and RL = random letter strings. The circles represent the empirical data
and the crosses represent the predicted data. Note the predicted data consists of
100 separate data sets superimposed on the empirical data. The green points are
correct responses and the red points are incorrect responses.
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Table 4.3: Bayesian predictive p-values for drift variance ordering.

Data Set HF ≤ LF HF ≤ RL HF ≤ VLF HF ≤ PW LF ≤ RL LF ≤ VLF LF ≤ PW RL ≤ VLF VLF ≤ PW

1 < .001 - < .001 < .001 - .985 < .001 - < .001

2 < .001 - .01 < .001 - .972 .008 - < .001

3 .012 - .040 < .001 - .679 < .001 - .001

4 .011 .1 .015 - .875 .556 - .556 -

5 < .001 .074 - - .978 - - - -

Note. Low p-values suggest that the DDM and REM–LD are in agreement.

4.3 General Discussion

The lexical-decision task has often been conceptualized as a specific case of

signal detection theory (SDT; Norris, 1986; Balota & Chumbley, 1984), with de-

cisions based on a continuously distributed evidence variable (i.e., word-likeness).

The outcomes of decisions depend on both the mean and variance of evidence, but

previous studies have assumed that these evidence distributions are equally vari-

able for words and non-words (Ratcliff, Gomez, & McKoon, 2004; Wagenmakers

et al., 2008) with some supporting evidence from choice data (Jacobs et al., 2003;

S. D. Brown & Steyvers, 2005). This implies that performance depends purely on

evidence-distribution means. However, the latter investigations did not consider re-

sponse times (RTs), which could potentially support different conclusions (Ratcliff

& Starns, 2009).

This turned out to be the case, with our analysis based on both RTs and

accuracy clearly rejecting the equal variance assumption (see also Dutilh et al.,

2009, 2011, 2012). These results imply that researchers should take account of

factors that affect the variability in evidence as well as its mean. For example,

number of letters, orthographic neighborhood size, average base-word frequency,

and average base-word number of syllables are factors known to affect between-item
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variability in response times and accuracy (Yap, Sibley, Balota, Ratcliff, & Rueckl,

2015). Estimation of inter-trial drift variability is sensitive to variability in RT and

accuracy, and so, it seems likely that these item level differences will be influential

on the magnitude of inter-trial evidence (i.e., drift rate) variability.

We also investigated the Retrieving Effectively from Memory model of Lexical-

Decision (REM–LD). REM–LD is based on a general model architecture that pro-

vides a comprehensive explanation of human memory. In REM–LD, stronger matches

between the probe and trace skew the evidence distribution, which produces greater

evidence variability for words than non-words, particularly for higher frequency

words. Using typical parameter settings, we showed that REM–LD makes the predic-

tion that the evidence variability will be largest for high-frequency words, followed by

low-frequency, random letter strings, very-low-frequency, and finally pseudo-words.

We fit the Diffusion Decision Model (DDM; Ratcliff, 1978) to free-response

lexical-decision data and examined the parameter estimates of inter-trial drift rate

variability, which is analogous to evidence variability in SDT and REM–LD (Ratcliff,

1978, 1985). We found that the predictions of REM–LD were comparable to the

DDM’s evidence variability estimates for all word frequency conditions except low-

frequency words. Specifically, the DDM predicted drift variability was highest for

high-frequency words, followed by random letter strings, very-low-frequency, low-

frequency, then pseudo-words. Overall, our results are encouraging because two

prominent models of lexical-decision mostly agreed about predictions of word and

non-word evidence variability.

Evidence variability occurs because items in the same category do not have
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the same word-likeness value, or in terms of the DDM, the same drift rate. Intu-

itively, one might assume that higher frequency words are less variable than lower

frequency words; perhaps because people might not know the definitions to some

lower frequency words, making them more like non-words and inflating the vari-

ability. Despite this intuition, we observed that higher frequency words are more

variable. Under REM–LD, the reason that higher frequency words are more variable

is because of the way lexical retrieval operates by comparing a probe cue to all of

the traces in the participant’s lexical memory. When the probe cue is a word, it pro-

duces a strong match to its own trace and a weak match to all of the other traces in

lexical memory. When these matches are averaged together, the contribution from

the strong match skews the posterior odds ratio distribution, producing greater vari-

ability for words than non-words and greater variability for higher frequency words

relative to lower frequency words.

Our results parallel findings from the recognition memory literature, where

inter-trial drift rate variability is higher for studied (i.e., stronger) items (Ratcliff &

Starns, 2009; Starns & Ratcliff, 2014; Starns, Ratcliff, & McKoon, 2012; Osth, Den-

nis, & Heathcote, in press). Models of recognition memory employ the same retrieval

structure as REM–LD and predict higher variability for studied items for a similar

reason: recognition is carried out by matching a cue vector against each memory,

calculating the similarity, and making a decision based on either the summed or

averaged similarity. Findings about evidence variability have played a crucial role in

developing a theoretical understanding of recognition memory (Wixted, 2007; Osth

& Dennis, 2015; Shiffrin & Steyvers, 1997), and our results suggest that they may

play a similar role for theories of lexical memory.
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All sequential sampling models have the same underlying assumptions about

the decision-making process: they assume there is an initial amount of evidence for

all response options and more evidence is continually sampled from the environment

until an evidence criterion is reached for a particular response. When this criterion

is reached, a decision is made. Beyond these assumptions, each sequential sampling

model describes the decision process differently. The problem is that we have no

way to identify the correct model – as ”all models are wrong, but some are useful”

(Box & Draper, 1987, p. 424) – and with many models being used to describe the

processes underlying decision-making, we must at least be sure that the conclusions

being made are not dependent on what model is used.

Previous work has been insightful on the consistencies between two of the

more prominent sequential sampling models – the Diffusion Decision model (DDM;

Ratcliff, 1978) and the Linear Ballistic Accumulator model (S. D. Brown & Heath-

cote, 2008) – in terms of the conclusions they draw about underlying psychological

processes. Researchers have found differences in how the models account for practice

effects in a lexical decision task (Heathcote & Hayes, 2012) and performance in a

reward maximization task (Goldfarb, Leonard, Simen, Caicedo-Núñez, & Holmes,

2014). In a comprehensive comparison between the DDM and LBA, Donkin, Brown,

Heathcote, and Wagenmakers (2011) observed no differences between the models in

empirical data, but in simulated data, the authors found differences in response cau-

tion between both models. For the most part, these models have been found to be

in agreement with each other.

This paper highlights two differences between the DDM and the LBA that

have practical implications. The first distinction is the LBA’s capacity to predict
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an overall increase in mean drift rate toward all response boundaries. The DDM

can produce equivalent effects by increasing the within trial noise of the diffusion

process. The second distinction is the estimation of non-decision time processes for

both models. Before I discuss both these differences, I briefly outline the DDM and

LBA models.

5.1 Increasing Overall Drift Rate

The DDM is part of a more general class of sequential sampling models that

assume relative evidence accumulation (Link & Heath, 1975; Laming, 1968; Stone,

1960). This means that evidence for one response option is evidence against the

other response option. On the other hand, the LBA is part of the racing accumu-

lator framework (S. D. Brown & Heathcote, 2005; Verdonck & Tuerlinckx, 2014),

where each accumulator independently accumulates evidence toward the response

threshold.1 The overall drift rate effect I discuss next distinguishes classes of models

that assume relative evidence accumulation from models that assume independently

racing accumulators.

The LBA can estimate an overall speed up toward both the correct and

incorrect response boundary. In the DDM, a speed up of mean drift rate toward

the correct boundary is a slow down of the mean drift rate toward the incorrect

boundary. In Figure 5.1, are the effects of increasing overall mean drift rate for

correct and incorrect accumulators for the LBA. Initially, the mean drift rate for the

1Note that when there is competition between accumulators, and if competition is strong
enough, then independent accumulation resembles relative accumulation (Usher & McClelland,
2001; Teodorescu & Usher, 2013; Teodorescu, Moran, & Usher, 2015).
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correct accumulator is 2 and the mean drift rate for the incorrect accumulator is 0,

making for an average mean drift rate of 1. When both correct and incorrect mean

drift rates are increased, then the overall mean drift speed up reduces the spread

of both the correct and incorrect response time (RT) distributions. In particular,

the tail, or .9 quantile (q.9), shifts closer to the median as overall mean drift rate

increases. We can quantify the associated change in the skew of the distributions,

where skew is defined as (q.9 - q.5) - (q.5 - q.1). The change in skew from an average

drift of 1 to 3 is .456 for the correct RTs and 1.26 for the error RTs.
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Figure 5.1: Effects of increasing overall mean drift rate on correct and error RT
distributions when other LBA parameters are held constant. The x-axis shows
the average of the correct and incorrect mean drift rate, which increases as both
correct and incorrect mean drift rates increase. In both panels the top, middle,
and bottom lines represent the .9, .5, and .1 quantiles, respectively. Values of the
other parameters were A = 1, b = 2, s = 1, t0 = 300 ms.

In practice, this speed up toward both thresholds could arise in speed vs

accuracy manipulations. For example, Rae et al. (2014) presented results from fitting

the LBA to experiment 1 from Wagenmakers et al. (2008). In this experiment

participants identified whether a string of letters was a word or a non-word. A

key manipulation was the emphasis on speed or accuracy. In the speed emphasis
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condition, participants were told to respond as quickly as possible. In the accuracy

emphasis condition, participants were told to respond as accurately as possible.

Importantly, the mean drift rates were allowed to vary over speed and accuracy

emphasis.

The mean drift rates from the LBA fit in Rae et al. (2014) are shown in

Figure 5.2. The Figure shows the correct (dots) and incorrect (crosses) mean drift

rates in the speed condition (in gray) both increase relative to the accuracy condition,

demonstrating an overall mean drift rate increase.
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Figure 5.2: Mean drift rate estimates taken from Table 5 from Rae et al (2014).
Drift rate parameters are from an LBA model fit to Experiment 1 of Wagenmakers
et al. (2008). The dots are for the correct response and the crosses are for the
incorrect response. Grey points are for the speed emphasis condition and black
dots are for the accuracy emphasis condition.

But how does DDM explain a speed up toward both boundaries? To answer

this I simulated data from the LBA with the following parameters: A = 1, b = 2,
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s = 1, t0 = 300ms, v1correct = 3, v2correct = 3.5, v1incorrect = 1, v2incorrect = 1.5.

The main manipulation is an overall increase in mean drift rate for both correct and

error accumulators, where the first condition has an average mean drift (averaged

over accumulators) of 2 and the second condition has and average mean drift of 2.5.

In Figure 5.3 are two sets of 20 simulated diffusion processes. The figure

shows that increasing s increases the variability of the evidence accumulation pro-

cesses, which results in faster accumulation towards both boundaries and relatively

more errors (i.e., terminations at the bottom boundary). Increasing overall mean

drift rate in the LBA leads to a similar decrease in RTs and an increase in errors.

To test if changes in s can account for overall mean drift rate increases

in the LBA, I fit the DDM using hierarchical Bayesian methods to data generated

from the LBA. I fixed the s parameter to 1 in the average drift = 2 condition and

estimated s in the average drift = 2.5 condition. I found that an overall increase in

mean drift rate in the LBA results in an increase in the s parameter in the DDM: the

mean group-level mean s was 1.29 in the average drift = 2.5 condition. As shown in

Figure 5.4, the DDM with a free s parameter provides an adequate fit to the data

generated by the LBA.

The LBA can predict an increase in mean drift rate in all accumulators.

The DDM can attribute this speed up to an increase in the within trial noise of

evidence accumulation. However, because s scales the parameters of the DDM,

increasing s is equivalent to decreasing all of a, vDDM , and sv by multiplying them

by 1
s
.2 Meaning that another, yet more complicated, interpretation of the diffusion

2Only a, vDDM , and sv need to be scaled if z and sz are estimated as relative to a, which is
the case here.
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Figure 5.3: Simulated diffusion processes. Each panel shows 20 processes sim-
ulated by random walks. For both simulations, a = 2, z = a/2, and v = 2. For
the top panel s = 1 and for the bottom panel s = 2. In both panels, the upper
boundary is for the correct response and the bottom panel is for the incorrect
response.

model results, is that the increased rush toward both decision boundaries is caused

by lower boundary separation, lower mean diffusion drift rate, and lower between

trial variability in drift rate.
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Figure 5.4: Simulated RT distributions from the LBA mode (black dots) and
predicted RT distributions from the DDM model (black crosses). RT distributions
are summarized as by their .1, .5, and .9 quantiles. Error bars represent 1 standard
error of each quantile. Predicted data from the DDM was generated from the
median group level mean posterior estimates.

5.2 Estimating Non-Decision Time

Both the DDM and LBA explicitly model the decision process, which allows

for researchers to determine the effects of sub-processes (e.g., drift rate) on decision

time. The time needed for processes outside of the decision process is represented

by the non-decision time parameter. The non-decision time parameter determines

the smallest possible RT and accounts for shifts in the entire RT distribution.

Researchers who use the DDM typically assume that non-decision time is

variable across trials. For example, Ratcliff, Gomez, and McKoon (2004) found that

including non-decision time variability allowed the DDM to better fit the .1 quantile

of RT distributions from a lexical decision task (Ratcliff, 2002; Ratcliff & Smith,
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2004). However, assuming a constant non-decision time provides a substantial com-

putational speed up, which is one reason why a constant value is assumed by the

more parsimonious LBA. Whether a constant value of non-decision time is overly

simplistic is yet to be formally investigated – in fact, the distributional properties of

non-decision times are not well understood (Ratcliff, 2013; Verdonck & Tuerlinckx,

2015).

Perceptual encoding time for simple visual stimuli can be as fast as 50ms

(Bompas & Sumner, 2011), while key-press responses can be as fast as 66ms (Smith,

1995, p. 585). More recently, researchers have related measurements of electro-

physiology in monkeys (Cook & Maunsell, 2002), and MEG and EEG in humans

(Amano et al., 2006; Tandonnet, Burle, Hasbroucq, & Vidal, 2005; Vidal, Burle,

Grapperon, & Hasbroucq, 2011) to the RTs to detect simple visual stimuli. By do-

ing so, researchers could partition out the time needed for visual perception, which

is approximately 150-200 ms. Given that non-decision time is the sum of perceptual

encoding and response production time, for tasks with a key press response modality

and stimuli as complex as motion dots, for example, we should expect non-decision

time to be at least 200ms.

Here I test if the DDM and LBA models agree about the time needed for

non-decision processes. In a simulation study, Donkin et al. (2011) found that the

DDM reliably estimates larger non-decision times than the LBA. In practice, the

DDM also typically produces higher estimates than the LBA. For instance, when

the LBA was fit to data from Ratcliff and Rouder (1998), the model produced

non-decision time estimates (S. D. Brown & Heathcote, 2008, Table 2) between

27-66ms lower than the diffusion model (Ratcliff & Rouder, 1998, Table 1). In
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some instances, the DDM estimates non-decision times greater than 400ms (Gomez,

Ratcliff, & Childers, 2015), leaving only 62-118ms of the mean RTs to be accounted

for by the decision process.

The difference between the LBA and DDM in terms of non-decision time can

have practical implications. For example, Heathcote and Hayes (2012) demonstrated

that non-decision time decreases with practice in a lexical decision task, but only for

the DDM, not the LBA. van Ravenzwaaij et al. (2012) analyzed data from a motion

dots task with the DDM and found that alcohol consumption impaired cognitive

and motor/perceptual encoding capacity. I refit the data here with both the DDM

and LBA model using hierarchical Bayesian methods.

We calculated the non-decision time values from the mean of the group-level

posterior mean. With the DDM, non-decision time was 278 ms for placebo doses

and this increased to 288 ms for high alcohol doses.3 With the LBA, non-decision

time was 107 ms for placebo doses and this decreased to 100ms for high alcohol

doses. Therefore, if researchers had used the LBA, they would conclude that alcohol

consumption does not lead to motor/perceptual encoding deterioration and that

alcohol doses reduce motor/perceptual encoding time. Finally, the estimates of the

LBA are below the expected 200 ms inferred from previous work.

3Note that the original authors found an increase of 19 ms rather than 10 ms in non-decision
time between placebo and high alcohol doses.
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5.3 Discussion

Sequential sampling models are useful because they translate response time

(RT) data into interpretable psychological phenomena. These models allow re-

searchers to draw conclusions about the speed of information processing, a priori

response bias, response caution, and non-decision time. The increase in use of these

models demonstrates that more and more researchers have discovered the merits of

these analysis tools. But are the conclusions that are drawn dependent on what

model is used?

Previous research has shown that the conclusions drawn from both the diffu-

sion model (DDM) and linear ballistic accumulator (LBA) are mostly in agreement

(Donkin et al., 2011). In the current paper, I highlight two key discrepancies between

the DDM and LBA. Firstly, the LBA can predict an overall speed-up in mean drift

rates for both responses. I show that this overall speed-up in drift rate occurs when

participants are asked to prioritize speed over accuracy. The simplest DDM account

for this overall drift speed up is an increase in within-trial drift variability. Secondly,

the DDM estimates higher values of non-decision time than the LBA, which can lead

to the two models disagreeing about non-decision time effects. Both these discrep-

ancies could cause researchers to draw different psychological conclusions from the

LBA or DDM.

As I have demonstrated in this thesis, both models have merit for their

application in specific modeling applications. However, I suggest that researchers use

caution when drawing conclusions based on either absolute drift rates or non-decision

time. Fortunately, the models seem to agree more often than they disagree. The
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conceptual differences highlighted in the current chapter are aimed to be informative

for researchers who need to select between the DDM and LBA for inferring about

the underlying processes of decision-making.
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6.1 Introduction

Participants in the Stroop task (Stroop, 1935) are presented with a color-

word printed in color and must respond to the color and ignore the word. They

are faster, on average, to name the print color of a congruent color-word stimulus

(e.g., the word RED printed in red) than an incongruent stimulus (e.g., GREEN

in red). The Stroop effect is calculated as the difference in response time (RT)

between congruent trials and incongruent trials, and demonstrates the unintended

influence of the word. It is one of the most replicated experimental effects in cognitive

psychology, yet despite years of research there is no agreed theoretical resolution as

to the cause of the effect (MacLeod, 1991; Eidels, Townsend, & Algom, 2010; Eidels,

2012).

Theoretical accounts of the Stroop effect (e.g., Palef & Olson, 1975; Logan,

1980; Cohen, Dunbar, & McClelland, 1990; Melara & Algom, 2003) must assume

that participants process the meaning of the printed words despite instructions to

ignore them and focus on the print color; otherwise the time to respond ‘red’ should

be the same for any word printed in that color, regardless of whether it is congruent

or incongruent – and hence, there would be no behavioral Stroop effect.

RTs have been the preferred dependent variable in many psychological ex-

periments (see Luce, 1986), including the Stroop task. Researchers used RTs to

determine that the Stroop effect is contingent on attentional resources (Kahneman

& Chajczyk, 1983), practice (MacLeod & Dunbar, 1988), dimensional discriminabil-

ity and experimental correlation (Dishon-Berkovits & Algom, 2000), target set size
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(La Heij & Vermeij, 1987), and the number of colored letters in the stimulus word

(Besner, Stolz, & Boutilier, 1997).

Despite their benefits, RTs provide only a single estimate of processing

duration at the end of each trial. Meaning there are limitations to what RTs can

tell us about the time course of an experimental effect. For example, an RT of 500ms

on a given trial of the Stroop task suggests that it had taken 500ms to perceptually

encode a stimulus, process and decide on the color of the stimulus, and execute a

behavioral response. However, we do not know how long each of these sub-processes

take.

There are statistical methods that provide insight into the time course of

experimental effects. Parametric studies can fit sequential sampling models to RT

distributions and estimate perceptual encoding time and rate of processing, but

these models are esoteric in cognitive psychology (e.g. Ratcliff & McKoon, 2008;

S. D. Brown & Heathcote, 2008). Alternatively, more general graphical exploration

methods of RT distributions, such as the delta plot, inform researchers about the

time course of experimental effects (De Jong, Liang, & Lauber, 1994).

6.1.1 Delta Plots of Stroop Data

Delta plots display graphically how an experimental effect changes across

different points of two RT distributions. For instance, the left panel of Figure 6.1

shows congruent and incongruent RT distributions of a hypothetical Stroop task. For

delta plots, instead of calculating the Stroop effect as the difference between mean

RTs of incongruent and congruent conditions, a researcher calculates the effect at a
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desired number of percentiles (e.g., at each decile of the two distributions). They

could then plot the effect at each decile against the mean RT of the two distributions

at each decile.1 The resulting delta plot is shown in the right panel of Figure 6.1.

This function is always above 0, meaning that RTs in the incongruent distribution

are slower than RTs in the congruent distribution for every decile. The positive slope

suggests that the difference between the incongruent and congruent RTs is bigger

for slower RTs than faster RTs.
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Figure 6.1: The left panel depicts RT distributions for the congruent and in-
congruent conditions of a Stroop task. The right panel depicts the resulting delta
plot.

Pratte, Rouder, Morey, and Feng (2010) used delta plots to investigate the

distributional properties of the Stroop and Simon effects, and found delta plots

with different slopes. Specifically, the slope for the Stroop effect delta function was

positive, with small values for fast responses and larger values for slower responses.

In contrast, the slope of the Simon effect delta function was negative, with large

values for the fast responses and smaller values for slower responses. However, the

1The benefit of plotting percentile effects as a function of percentile means is that the delta plot
will be linear (Speckman, Rouder, Morey, & Pratte, 2008).
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delta plot slope depends on the exact nature of the task (cf. Proctor, Vu, & Nicoletti,

2003; Proctor & Shao, 2010; Dittrich, Kellen, & Stahl, 2014). The negative slope

for the latter suggests that the Simon effect results from a conflict at the motor

response stage, which decays over time. The positive slope for the Stroop effect

delta function suggests the effect results from a conflict at the processing stage,

which grows in magnitude as the participant processes the stimulus for a longer

duration.

A potential limitation of the delta plot method is its sensitivity to the

difference in variance between the distributions in question. This point is illustrated

in Figure 6.2, where we show delta plots that compare gamma distributions with

different means and standard deviations (SD) to a gamma distribution with fixed

arbitrary parameters – mean = 12 and SD = 3.2 The middle panel serves as a

benchmark and shows the delta plot of two identical gamma distributions with mean

= 12 and SD = 3, resulting in a flat line at 0. Each column represents distributions

with a different variance and each row represents distributions with a different mean.

The effect of changes in variance on the slope of the delta plot, while the mean is

held fixed, can be observed by moving along the columns within any given row.

Critically, if one RT distribution had the same mean but larger variance than the

other RT distribution, then the slope of the delta plot will be positive, regardless of

the mean RT. Note that for empirical RT distributions the standard deviation of RT

typically increases linearly with the mean (Wagenmakers & Brown, 2007), although

2 Typically the gamma distribution is parameterized with the shape and rate parameter. Given

that the mean of the gamma distribution = shape
rate and the SD of the gamma distribution =

√
shape
rate ,

the shape and rate parameters we used to generate data were shape = mean2

SD2 and rate = mean
SD2

(e.g. Kruschke, 2011, p. 170).
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there are cases where this trend does not hold, such as the Simon task (Pratte et

al., 2010).

There are limitations to investigating the time course of the Stroop effect

using mean RTs, as they rely on a single measurement of latency at the end of each

trial and ignore distributional information. The delta plot method makes use of the

entire RT distribution, but effects of mean and variance are hard to discern (see

Figure 6.2). Moreover, RT distributions can have different shapes and be shifted

in time. Ideally researchers would like a measure that produces identically shaped

distributions so that they can compare responses across the two distributions at the

same points in time. We offer an alternative to the delta plot method. A method

that allows researchers to look at experimental effects across identical distributions

at the same points in time.

6.1.2 Reach-To-Touch Paradigm

A promising method in cognitive science is the reach-to-touch paradigm

(Finkbeiner, Coltheart, & Coltheart, 2014). For instance, in the Simon task liter-

ature, the reach-to-touch paradigm has already been used to investigate temporal

properties of the effect (Porcu, Bölling, Lappe, & Liepelt, 2016; Buetti & Kerzel,

2010; Finkbeiner & Heathcote, 2016). In a typical design, participants may be pre-

sented with a cognitive task that requires a speeded choice between two or more

response alternatives. Participants execute their response by reaching out to desig-

nated spatial locations, say, left for color green and right for color red. The arm-

movement trajectories are recorded and serve as the dependent measure.
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Figure 6.2: Simulated delta plots. Each delta plot is calculated by comparing
gamma distributions with different means and SDs to a gamma distribution with
mean = 12 and SD = 3. Each column shows a distribution with different SD and
each row shows a distribution with different mean.

There are two key components to the reach-to-touch paradigm. First, it is

a continuous response measure that can reveal experimental effects as they emerge

over time. Arm movements in the reach-to-touch paradigm have been considered

a window into cognitive processes (Song & Nakayama, 2009; Spivey, Grosjean, &

Knoblich, 2005). More recently, Finkbeiner and colleagues (Finkbeiner et al., 2014;

Quek & Finkbeiner, 2013, 2014) pointed out that this continuous response measure

should be used with the second key component, the response signal procedure (Reed,
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1973, 1976).

The current study instructs participants to initiate their movement within

300ms of an imperative ‘go’ signal. This go signal is the final beep in a sequence

of 3 beeps. Importantly, on each trial the 3 beeps occur randomly so that the

final ‘go’ beep appears at different points in time relative to the onset of the target

stimulus. The time at which the participant begins moving relative to stimulus

onset is the movement initiation time (MIT). For example, MIT = 0 means that the

subject started to move their finger at the same time as the stimulus was presented.

Similarly, MIT = 300 indicates that the subject lifted their finger from the start point

300ms after the stimulus onset. A negative MIT means that the subject starting

moving their finger before having seen the stimulus. MITs represent movements that

commence at a range of different stimulus processing times. In the Stroop milieu,

we can examine the magnitude of the Stroop effect for various processing times (i.e.,

is the observed effect larger on late lift-off trials, which presumably allow more time

for processing).

6.1.3 The Forced-Reading Stroop Task

As well as the statistical methods discussed, recent experimental methods

have shed light on the nature of the Stroop effect. Eidels, Ryan, Williams, and Algom

(2014) employed a novel forced-reading Stroop task and found the standard Stroop

effect is only a proportion of the Stroop effect that could be observed. In the standard

task participants are asked to classify the print color of color-words irrespective of the

content of the word. In the forced-reading task participants were asked to classify the
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print color of color-words (e.g., RED, GREEN), but withhold their response when

presented with non-color-words (BED, GREED). To conform with the instructions,

participants were forced to read every word presented. Consequently, the forced-

reading Stroop task yielded a Stroop effect derived from fully processed words on

every trial. Eidels et al. found a larger Stroop effect in the benchmark forced-reading

task compared to the standard Stroop task, and suggested that the nature of reading

occurring in the two tasks is not comparable.

6.1.4 The Current Study

In the present study we use both the standard and forced-reading Stroop

tasks in conjunction with measurements of arm-reaching trajectories to understand

the time course of the Stroop effect.3 The forced reading task is a useful benchmark

as it yields a Stroop effect from fully processed words.

The key aspect of our study is that distributions of MITs do not differ

across conditions in our experiment (see Figure 6.3). There were no differences in

the means or the SDs of how long subjects view and presumably process the stimulus

before initiating their movement. Therefore, we compared arm reaching trajectories

across two identically shaped Stroop distributions to see if the Stroop effect unfolds

at a different rate, for the standard and forced task, at the same points in time.

Our analysis is not compromised by differences in variances or shapes between the

3The term ’standard Stroop task’ is a neutral term we use to refer to a Stroop task in which
participants are not ensured to read on each and every trial. Standard Stroop tasks typically use
response time as the dependent measure, have a vocal mode of responding, and have more than
two color stimuli (but see MacLeod, 1991).
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congruent and incongruent distributions, thus our study addresses concerns with the

delta plot.

We address four key research questions in our study. First, we expect that

participants will be more informed of the correct response with additional processing

time. So do participants get a better idea of how to respond at later MITs? Second,

there is an increased task demand in the forced-reading Stroop task because partic-

ipants are required to read each and every word. But does this task demand result

in the decision process unfolding faster in the standard Stroop task compared to the

forced-reading Stroop task? Third, researchers have inferred from delta plots that

Stroop interference grows over time (Pratte et al., 2010). This conclusion is also

in line with extant theories of the Stroop effect (Cohen et al., 1990; Melara & Al-

gom, 2003). However, given the limitations of the delta plot, we investigate whether

the Stroop effect (when it exists) grows over time in the reach-to-touch-paradigm.

Finally, the standard Stroop has previously been found to be a proportion of the

benchmark forced-reading Stroop effect (Eidels et al., 2014). With our method we

look at whether the Stroop effect grows in magnitude in the forced-reading task

more than the standard Stroop task as stimulus-processing/viewing time increases.

6.2 Method

6.2.1 Participants

Twenty psychology students from Macquarie University participated in the

study in return for course credit. All participants were native English speakers with
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Figure 6.3: Distribution of MITs for congruent and incongreunt conditions in
the standard and forced Stroop tasks. The four MIT distributions of interest do
not differ in location or scale. Zero value on the x-axis means that the participant
initiated movement at the same time as the stimulus onset. The figure shows that
the majority of responses were initiated after stimulus onset. In the standard task
the mean MIT was 172ms in the congruent condition and 169ms in the incongruent
condition. In the forced task the mean MIT was 166ms in both the congruent and
incongruent conditions.

normal or corrected to normal vision, intact color vision, and reported to be right

handed. All participants took part in both the standard and forced-reading Stroop

tasks.

6.2.2 Apparatus

A schematic of the experimental apparatus is presented in Figure 6.4, with

important materials labeled with numbers. Participants sat in front of a table and
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placed their right index finger on a small Velcro square (marked ‘0’ in Figure 6.4),

which marks the starting position and the return position for every trial. Stimuli

were presented on a 27” Samsung LCD/LED monitor using the software ‘Presenta-

tion’. The monitor was situated 1m away from the participants and centered with

their body mid-line. Lateral response boards (30cm x 9cm) were placed to the left

(1) and right (2) of the monitor, 75cm apart and 50cm from the front of the desk.

A third response location (3) was marked on the desk between the participant and

the monitor, 50cm away from the front edge of the desk. A small motion-tracking

sensor was taped to the tip of the right index fingertip of each participant. A Polhe-

mus Liberty (240Hz) electromagnetic motion tracking system was used to record the

participants arm trajectories during the experiment. Participants wore headphones

adjusted to a comfortable volume level, which were used to present a sequence of

beeps.

6.2.3 Stimuli

The standard Stroop task and the forced-reading Stroop task used the same

stimuli. The stimuli were the color-words: RED and GREEN; and the non-color-

words were: ROD, BED, RENT, QUEEN, GRAIN and GREED. These non-color

stimuli were specifically selected to ensure that participants would not base their

responses on local cues. The non-color stimuli were the orthographic neighbors of

the color-words with the closest frequency, such that each non-color-word shared all

but one or two letters with a color-word (see Eidels et al., 2014). All words were

printed in either the color red or green (with RGB values of 220/0/0 and 0/170/0,



Chapter 6. A Novel Measure of Cognition Applied to the Stroop Task 112

RED

0

3

1 2

x

y
z

Figure 6.4: A front facing view of the apparatus used for the current experiment.
Subjects placed their index finger on position 0 to start the trial. On each trial
participants reached toward the color response options, denoted by 1 and 2. In
the forced-reading task, participants could also reach towards a neutral response
option, denoted by 3.

respectively) and were written in uppercase Garamond font, which at a viewing

distance of 1m allowed for a visual angle of 4 degrees. Each of the color-words could

be congruent to the font color (e.g., RED printed in the color red) or incongruent

(e.g., RED printed in the color green). All non-color-words can be considered neutral

to the font color, whether they were printed in red or green (but see T. L. Brown,

2011).

6.2.4 Design and Procedure

Each participant attended two experimental sessions: the standard Stroop

task and the forced-reading Stroop task. Sessions were separated by a minimum of 1
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day and a maximum of 7 days. The order of task administration was counterbalanced

across participants so that half of the participants performed the standard Stroop

task first, and the remaining half performed the forced-reading Stroop task first. The

order of word presentation was random for each participant. For each session, the

participant performed in 840 trials. These trials were partitioned into seven blocks

of 120 trials each. There were 2-minute breaks between each block administration.

In each block, color-words were presented 15 times per combination of color ×

word (RED in red, RED in green, GREEN in red, and GREEN in green), which

made for 60 color-word trials. The six non-color-words were presented 5 times per

combination, making for 60 non-color-word trials within the same block.

In the standard Stroop task the participant classified the color of all the

words presented by reaching out to the left or right lateral response boards (‘1’ and

‘2’ in Figure 6.4). The left and right response boards corresponded to a red or a

green color and were counter balanced across participants. In the forced-reading

Stroop task, participants classified the color of color-words but did not classify the

color of non-color-words. For non-color-words, participants responded by reaching

towards a neutral response location (‘3’ in Figure 6.4).

On each trial, a single word in color was presented at the center of a black

screen. The timing of stimulus presentation was relative to the sound of three au-

ditory beeps that were played through the participant’s headphones. The stimulus

was randomly presented, with equal probability, at one of five different times prior

to the third beep (300, 230, 150, 70, or 0ms before the third beep). In four of the five

timing conditions (i.e., 80% of trials) the stimulus was presented before the onset

of the third beep, whereas in the 0ms condition (20% of trials) the stimulus and
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the third beep were presented simultaneously. This procedure controls for partici-

pant’s anticipation of stimulus display. In both tasks, participants had to initiate

their movement between 100ms before and 200ms after the third beep, meaning

all movement begun within a 300ms window around the third beep. Two example

trial-sequences are presented in Figure 6.5. If participants failed to initiate move-

ment within the allotted time-window they would receive a loud buzzing sound and

visual feedback to indicate they had responded ‘Too Early!’ or ‘Too Late!’. Once

a movement was initiated, participants were required to maintain a continuous for-

ward motion. Failing to do so terminated the trial and participants were provided

with a buzz and appropriate visual feedback. Trials that were terminated via move-

ment errors were repeated at a later stage of the block. The presentation of the trial

terminated when the participant responded via the response points. The next trial

followed after the sensor was returned to the start point.

6.2.5 Data Analysis

From the trajectories (Figure 6.6) we calculated the velocity along the x axis

(x-velocity), which serves as our dependent measure. X-velocity quantifies how fast a

participant is moving in the correct direction at any time during the trial. X-velocity

is positive for movements towards the correct direction and negative for movements

toward the incorrect direction. Thus, x-velocity provides data that ranges between

fast movement in the correct direction (large positive values) and fast movement

in the incorrect direction (large negative values). It is a more informative measure
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Figure 6.5: Example trial sequences for trials in which stimuli were presented
simultaneously with the third beep (top panel; 0ms gap between the onset of the
stimulus and the third beep) and 300ms before the third beep (bottom). The red
vertical bars below the time line indicate the onset of the three auditory beeps,
the green bar above the time line indicates stimulus onset, and the blue box shows
the 300ms window in which participants begun their movements. In addition to
the 0 and 300ms trial types there were also trials in which stimulus onset preceded
the third beep by 70, 150, or 230ms (not shown in the figure).

compared to nominal accuracy rates (correct/incorrect) or RTs, which range from

‘slow’ to ‘fast’ in only a positive direction.

Before calculating x-velocity, the positional data taken from the Polhemus

Liberty device was filtered with a two-way low-pass Butterworth filter at 7Hz, which

reduced noise in the data. Then, x-velocity was derived from the numerical differen-

tiation of the filtered positional data. The onset of movement was identified as the

first of 20 consecutive samples in which the tangential velocity exceeded 10cms/sec.

The offset of movement was identified as the first of 20 consecutive samples of tan-

gential velocity that occurred after peak velocity and that were less than 10cms/sec.
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For our analysis, we first improved the signal to noise ratio of the trajectories

with a modified version of orthogonal polynomial trend analysis (OPTA). The OPTA

procedure used here has been described in detail in Finkbeiner et al. (2014) and

Finkbeiner and Heathcote (2016). In summary, OPTA uses a regression model with

x-velocity as the dependent variable and MIT (with polynomial terms up to the 15th

order) as the predictor variable. Terms that did not explain significant variance were

removed from the model, leaving only significant coefficients to predict x-velocity for

each trial. After the OPTA analysis, we calculated the mean predicted x-velocity

values from the first 350ms of the reaching movement (initial x-velocity; Finkbeiner

et al., 2014). We limit our dependent measure to the first 350ms because the initial

part of the trajectory represents the motor plan participants had formulated just

prior to initiating their movement. The MIT latencies were used to group the initial

x-velocity profiles into 20 equal bins (i.e., semi-deciles). Finally, the mean predicted

initial x-velocity values were then subjected to a linear mixed-effects model with

MIT semi-decile included as a fixed effect.

6.3 Results

6.3.1 Accuracy

Overall, across all participants, 91% of the responses were correct and valid.

Mean error rate amounted to a negligible 1%. Invalid responses consisted of re-

sponding too early (3%), responding too late (5%), and not moving fast enough

(2%). None of the participants were excluded from analysis due to accuracy.
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Figure 6.6: Arm trajectories and mean arm trajectories of a single participant.
The four panels include arm trajectories related to the four possible conditions
obtained from crossing Task by Congruence. X and Y labels refer to the movement
planes presented in Figure 6.4. The Y axis denotes forward motion and the X
axis denotes lateral motion. Trajectories only include correct responses. Thus,
any differences between the left and right tracks are natural deviations in how the
hand moves to a target situated to the left versus right of mid-line.

6.3.2 Linear-Mixed Effects Analysis

The Linear-Mixed Effects analysis on predicted initial x-velocity (x-velocity

hereafter) was conducted only for correct responses. We used a model compar-

ison approach with the Bayesian information criterion (BIC G. Schwarz, 1978),

which selects the best fitting model while penalizing for complexity (i.e. number
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of parameters). The best fitting model included Task (forced, standard), Condition

(congruent, incongruent), and MIT (semidecile) as fixed effects. The model also

included subjects as a random effect. The relationship between x-velocity and MIT

was curvilinear and so the model included up to 3rd order terms for MIT. Here we

report the coefficients (b), standard errors, and t-values of the best fitting model.

The criterion for significance is a coefficient magnitude of at least twice the corre-

sponding standard error. For the ’condition’ factor, the congruent condition was

used as a baseline meaning that negative coefficients represent smaller x-velocities

relative to the congruent condition. For the ’task’ factor, the standard task was

used as a baseline meaning that negative coefficients represent smaller x-velocities

relative to the standard task.

X-velocity was smaller in the forced Stroop task compared to the standard

task (b = -34.80, SE = 0.32, t = -109.32). There was also a smaller x-velocity in the

incongruent condition compared to the congruent condition (b = - 4.07, SE = 0.32,

t = -12.87). X-velocity increased as a function MIT semidecile (b = 1606.03, SE =

21.07, t = 76.21). There was a significant interaction between task and condition,

where the difference in x-velocity between congruent and incongruent trials was

bigger in the forced task than the standard task (b = - 2.76, SE = 0.46, t = - 6.05).

There was an interaction between task and MIT semidecile (b = - 825.75, SE =

30.10, t = - 27.43), but no interaction between condition and MIT semidecile (b =

59.50, SE = 29.85, t = 1.99). Finally, there was a three-way interaction between

task, condition, and MIT semidecile (b = - 665.88, SE = 43.08, t = - 15.46).

To understand the nature of the three-way interaction we ran paired t-tests

(congruent vs. incongruent) at each of the 20 MIT semideciles for both the standard
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Stroop task and the forced Stroop task (Figure 6.7). We corrected for an inflated

type I error rate with Bonferroni corrected p values. This analysis showed the Stroop

effect unfolding over time. In the standard task the Stroop effect was not significant

for any of the 20 MIT semideciles.4 However, in the forced task the Stroop effect

was significant for movements that commenced at the 7th MIT semidecile (∼ 133ms)

through to the 20th and final MIT semidecile (∼ 338ms).

6.4 Discussion

Participants performed in both a standard and forced-reading Stroop task.

The dependent measure for both tasks were the reaching trajectories. Using arm-

reaching trajectories coupled with a signal-to-respond procedure allowed us to com-

pare Stroop effects that are calculated from two identically shaped distributions.

This way we could compare Stroop effects at the same points in time and presum-

ably equivalent processing times. At each point in time we observed how fast the

participant initially moved towards the correct response – initial x-velocity.

First, we wanted to know if participants get a better idea of how to respond

with increased stimulus processing/viewing time (processing time for brevity). Initial

x-velocity significantly increased as a function of MIT. Thus, the participant moved

faster toward the correct response when they had more processing time. This finding

might not be surprising as the participant would be more informed of the correct

response with additional time. Nonetheless, this finding supports our claim that the

4We ran 20 Bonferroni corrected t-tests across the semi-deciles separately for the two different
sessions. We found that the results of the standard Stroop effect was not dependent on the session
order as no standard Stroop was found for either session.
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Here we aggregate the x-velocity values across the first 150ms of the trajectory and then plot
those as a function of movement initiation time.
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Figure 6.7: Initial x-velocity by MIT and Condition (congruent and incongruent)
in standard and forced Stroop task. Error bars represent within-subjects 95% CIs.
MIT values indicate the time delay between stimulus onset and the beginning of
the response movement. The Stroop effect is represented by the vertical difference
in height between the congruent (circles) and incongruent (triangles) markers at
each quantile. Stroop effect is null on early quantiles of the forced task, but
emerges later on. It is effectively null in the standard task, for all quantiles.

impact of increased processing time can manifest in our initial x-velocity dependent

measure.

Second, we looked at whether their was a difference in overall performance in

the forced-reading Stroop task compared to standard Stroop task, as the forced task

had a greater task demand. We found that initial x-velocity increased more quickly

as a function of MIT for the standard task than the forced task. This suggests that



Chapter 6. A Novel Measure of Cognition Applied to the Stroop Task 121

the participant’s decision process unfolded at a faster rate over time in the standard

task compared to the forced task.

Finally, we wanted to know if the Stroop magnitude emerged with more

processing time and if the effect grew in the forced-reading task more than the

standard Stroop task. We found that the Stroop effect was not evident in neither

the standard nor forced tasks prior to approximately 133ms of processing time.

Yet, after 133ms the Stroop effect was only evident in the forced task and not the

standard task. In the forced task, the Stroop effect continued to grow in magnitude

after 133ms. The lack of effect in the standard task suggests the standard Stroop

effect is only a proportion of the benchmark forced-reading Stroop effect. Crucially,

this finding does not depend on the amount of processing time – although some

processing time, namely 133ms, is needed for significant differences between the

standard and forced-reading Stroop task to emerge.

6.4.1 Validating Findings from Delta Plots and Forced-reading

Pratte et al. (2010) advocated the delta plot as a method for examining the

time course of experimental effects, such as the Stroop effect. In their application

of the delta function they found that the Stroop effect was small for fast responses

and large for slow responses. Their finding suggested that the effect grows in mag-

nitude as processing time increased. But, the slope of the delta plot is sensitive to

the variance of the distributions in question, limiting its applicability. We showed

that when the Stroop effect is observed, it grows in magnitude as processing time

increases, even when assessed without the confounds of delta plots.
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However, a significant Stroop effect only emerged in the forced Stroop task.

The lack of a Stroop effect in the standard task is not a surprising result. Despite

the reputation of the Stroop effect as a robust phenomenon, it has been shown to

depend on design as well as other contextual factors. The effect appears only when

certain conditions are met, but can be very small and even reversed given particular

contextual factors (e.g., Kahneman & Chajczyk, 1983; MacLeod & Dunbar, 1988;

Dishon-Berkovits & Algom, 2000; Besner et al., 1997; La Heij & Vermeij, 1987). In

his comprehensive review of Stroop research, MacLeod (1991) listed set-size, mode

of response, and relative speed of processing (among other factors) as factors that

determine the magnitude of the effect. Since MacLeod, a substantial number of

empirical papers have shown the malleable nature of the Stroop effect and how,

with small set size and manual responses, it can be quite small and even vanish (see,

e.g., Melara & Mounts, 1993; Dishon-Berkovits & Algom, 2000; Sabri, Melara, &

Algom, 2001; Melara & Algom, 2003).

Our experimental design was limited to only two colors and to a manual

(rather than than vocal) mode of response, both known to limit the magnitude

of the Stroop effect (see also Eidels, Townsend, & Algom, 2010). Nonetheless, a

marked Stroop effect was registered in the forced-reading task of the current study,

suggesting that the effect can emerge even with two colors and a manual mode of

responding. Its absence in the standard task does not merely reflect sensitivity to

set size or to the mode of responding, but rather suggests that words in the standard

Stroop task may not be fully processed, at least not to the same extent they are

processed in the forced task.

The asymmetry in Stroop effects across the standard and forced tasks could
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potentially be explained by the complexity of the forced-reading task. Specifically,

Eidels et al. (2014) documented longer response times in the forced task, with the

additional time allowing for the irrelevant word to interfere with color naming more

(e.g., Melara & Algom, 2003).

The present study offers another way to expand on the findings of Eidels et

al. (2014) by providing the means to directly examine the magnitude of the Stroop

effect at the same points in processing time across the two tasks. Participants in

the present study initiated their reaching responses in synchrony with an impera-

tive go signal, as opposed to the target stimulus. Thus, we were able to equate

the movement initiation times across the two tasks, despite the differences in task

difficulty/complexity. When we compared the magnitude of the Stroop effect across

tasks at similar points in stimulus-processing time, we observe a clear Stroop effect

in the forced-reading version of the task at all time points greater than 133ms. In

contrast, the magnitude of the effect is reduced at the corresponding time points in

the standard version of the task. Expanding on Eidels et al. (2014) we show that

the larger Stroop effect under forced-reading instructions is not an artifact due to

longer processing time, but a genuine effect.

6.4.2 Theoretical Implications

A central result of the current study is the larger difference observed be-

tween the incongruent and congruent conditions (i.e., larger Stroop effect) at longer

movement initiation times (see Figure 6.7) in the forced reading task. Existing the-

ories of the Stroop effect may differ in their predictions concerning the magnitude
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of the effect as processing time increases. We briefly survey three popular models

and discuss whether they can predict this observed result.

The horse race model of the Stroop effect (Palef & Olson, 1975) suggests

that activation of the word and color information accumulates in parallel. Word

and color information accumulate toward a response channel, where task irrelevant

word information arrives first. Because the word channel finishes first our cognitive

system needs to wait for a response activated by the slower color information, which

manifests as Stroop interference. This model has been criticized as it cannot account

for data where the word information is delayed (e.g., Glaser & Glaser, 1982). In

regards to our study, the horse race account cannot accommodate a Stroop effect

that grows over time, which we observed in the forced reading task.

A current and popular account of the Stroop task is the parallel distributed

processing model (Cohen et al., 1990). This model suggests that our system receives

information (input) from different dimensions that travel down specific pathways to

response mechanisms (output). Some of these pathways have stronger activation

than others and the strength of this activation, not the speed, determines the out-

put. In the Stroop task, the word pathway is considered stronger than the color

pathway. Because word processing is more likely to reach the output node before

color processing, additional activation needs to be recruited from task-specific nodes,

which cause the system to run for many more processing cycles.5 This account is in

line with our results as longer processing times produce greater Stroop interference.

5See Botvinick, Braver, Barch, Carter, and Cohen (2001), who expanded the parallel distributed
processing model to explain how our cognitive system monitors and regulates conflict.
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Similarly, our results are in line with the tectonic theory of selective atten-

tion (Melara & Algom, 2003). In this model, evidence from target relevant informa-

tion lead to the response required on the trial and values of the non-presented target

lead to an incorrect response. A ratio of this evidence is calculated, and once the ra-

tio reaches 1, a response is made. When there is more evidence for the non-presented

target (i.e., when you have processed the word for longer) than the presented target,

more processing steps are required to exceed the response threshold.

The fact that we found a Stroop effect in the forced task, but not the

standard, sheds light on the nature of reading in the Stroop task. For instance,

on any particular trial of the standard task, a participant might be processing the

word to some extent or not reading the word at all. Eidels et al. (2014) posit a

simple probability-mixture model to account for these results. Under this model, the

empirical congruent and incongruent distributions we observe are binary mixtures of

two unobserved distributions. A given trial is a sample drawn from the distribution

associated with reading (with probability p) or the distribution free of word reading

(with probability 1-p). The forced reading task increases the probability of reading

to (p=1). This should lead to an inflated Stroop effect compared with the standard

task, which is what we observe in our data.

6.4.3 Conclusions

Our study has methodological and theoretical implications. The arm reach-

ing paradigm can potentially reveal how experimental effects emerge over time. We

found that when the Stroop effect is observed, it grows in magnitude with more time
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for processing – and this finding was demonstrated without the confounds of delta

plots. We also showed that the nature of reading in the standard Stroop task is not

comparable to a task in which we know the participant reads on every trial.
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127
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In this thesis, I examined perceptual decision-making from a sequential sam-

pling model perspective. I addressed a number of theoretical issues related to cog-

nitive load effects, speech perception, and lexical decision. This work demonstrates

how sequential sampling models can account for both accuracy and response times

(RT) from perceptual decision-making tasks, and by doing so, allow researchers to

draw psychologically meaningful conclusions from behavioral data. In these stud-

ies I used Bayesian estimation to fit models to data. The Bayesian fitting routine

allowed me to calculate posterior distributions of parameters, which contain infor-

mation about what parameters are plausible and represent a natural measure of

uncertainty. In each study I compared competing models by how well they predict

future data. I show that predictive accuracy is one way that researchers can choose

between competing theories instantiated as formal mathematical models. Despite

the benefits of sequential sampling models, I demonstrated that these models can

arrive at different conclusions when applied to the same data, and therefore, I ad-

vocate careful application of these models. I also demonstrated how researchers can

use motion tracking technology and arm-reaching movements in perceptual decision-

making tasks as a method for observing cognitive processes unfold online. For the

rest of this chapter I will summarize the main conclusions of this thesis and then out-

line future directions for sequential sampling models of perceptual decision-making.

7.1 Summary of Results

In chapter 2, I investigated cognitive load effects on drivers and passengers

of a motor vehicle. Cognitive load from secondary tasks, such as talking on a cell
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phone, is a source of distraction, which is a significant cause of injuries and fatalities

on the roadway. The Detection Response Task (DRT) is an international standard

used to assess cognitive load on drivers’ attention. I investigated whether decrements

in DRT performance was due to changes to the speed of information processing,

the response caution, or the non-decision processing of drivers and passengers. I

had pairs of participants take part in the DRT while performing a simulated driving

task. I manipulated cognitive load via the conversation between driver and passenger

and observed associated slowing in DRT RT. Fits of single-bound diffusion model

indicated that slowing was mediated by an increase in response caution. I proposed

the novel hypothesis that, rather than the DRT’s sensitivity to cognitive load being

a direct result of a loss of information processing capacity to other tasks, it is an

indirect result of a general tendency to be more cautious when making responses in

more demanding situations.

In chapter 3, I used the Linear Ballistic Accumulator (LBA) to investigate

how changes in acoustic cues affect latent cognitive processes that underpin phoneme

decisions. In summary, I tested 30 Dutch listeners in a categorization experiment

that required them to categorize speech sounds that varied in vowel quality (F1 and

F2) and duration between typical /A/ and /a:/. Using the LBA model, I found that

the changes in spectral quality and duration cues lead to changes in the speed of

information processing, and the effects were larger for spectral quality. For stimuli

with atypical spectral information I found that listeners accumulate evidence faster

for /A/ compared to /a:/. Finally, longer durations of sounds did not produce longer

estimates of perceptual encoding time.

In chapter 4, I applied the Diffusion Decision Model (DDM; Ratcliff, Gomez,
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& McKoon, 2004) to the lexical-decision task. The lexical-decision task is among the

most commonly used paradigms in psycholinguistics. In both the signal-detection

theory and DDM frameworks, lexical-decisions are based on a continuous source of

word-likeness evidence for both words and non-words. Previous applications of the

DDM and studies using receiver operating characteristics assumed that evidence

variability is equal across words and non-words. To test this assumption, I analyzed

five lexical-decision data sets with the DDM. For all data sets, drift-rate variability

changed across word frequency and non-word conditions. I also compared the results

of the DDM analysis to the a-priori predictions of the REM–LD model of the lexical-

decision task (Wagenmakers et al., 2004). There were some small discrepancies, but

for the most part, we confirmed the predictions of REM–LD about the ordering of

evidence variability across stimuli in the lexical-decision task.

In chapter 5, I compared the DDM and LBA and discussed conceptual

differences between the two models that may lead to researchers drawing different

psychological conclusions from the models. I argued that there are now many se-

quential sampling models, and although they share fundamental assumptions, they

do not always draw the same psychological conclusions. I highlighted two key con-

ceptual differences between two prominent sequential sampling models: the DDM

and LBA. Firstly, the LBA can predict a speed up in mean drift rate for all accu-

mulators, and the diffusion model compensates for this effect with changes in the

diffusion coefficient (moment-to-moment drift rate fluctuation). Secondly, the DDM

reliably estimates higher non-decision times than the LBA and the two models can

disagree on whether non-decision time effects are present.
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In chapter 6, I presented an arm-reaching method, which I used to inves-

tigate the nature of reading in the Stroop task. In a Stroop task participants are

presented with a color name printed in color and need to classify the print color

while ignoring the word. The Stroop effect is typically calculated as the difference

in mean RT between congruent (e.g., the word RED printed in red) and incongru-

ent (GREEN in red) trials. Arm-reaching trajectories allow for a more continuous

measure for assessing the time course of the Stroop effect than RT. I compared arm

movements to congruent and incongruent stimuli in a standard Stroop task and a

control task that encourages processing of every word. The Stroop effect emerged

over time in the control task, but not in the standard Stroop, suggesting words may

be processed differently in the two tasks. Overall, chapter 6 demonstrated that the

arm-movements of participants are a promising measure for investigating cognitive

processes online.

7.2 Future Directions

For more than 50 years researchers have developed sequential sampling mod-

els of perceptual decision-making. The key feature of these models is their capac-

ity to account for behavioral data from perceptual decision-making tasks while re-

expressing the data as meaningful latent cognitive processes. With the advancement

of modern neuroimaging technology, researchers have also been able to investigate

perceptual decision-making by measuring brain activity and have been able to draw

meaningful conclusions from the neural data.
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Traditionally, mathematical modeling of cognition and neuroscience have

been two separate and non-interacting methods of inquiry. Two key limitations to

this independent approach is the lack of empirical grounding of mathematical models

of cognitive processes to neural activity that may give rise to processes themselves.

On the other hand, researchers find it difficult to make inferences about cognitive

processes from the neural data alone. Because of these limitations, mathemati-

cal modeling and neuroscience have begun to converge on an interdisciplinary field

known as model-based cognitive neuroscience (Forstmann & Wagenmakers, 2015).

This field attempts to offer a detailed explanation of human behavior by combining

our understanding of cognitive processes through modeling and our understanding

of neural processes through brain measurements.

One aim of model-based cognitive neuroscience is to determine if the neural-

activity of brains corresponds to processes posited by cognitive models. For example,

do drift rates in sequential sampling models correspond to firing patterns in certain

neuron populations? However, the links between cognitive processes and brain ac-

tivity is not straight forward, and these links fall along a continuum, where multiple

theoretical levels of linking exist (de Hollander, Forstmann, & Brown, 2015). At a

qualitative level, the neural dynamics uncovered by brain imaging studies has in-

spired researchers to develop neurally plausible sequential sampling models (Usher

& McClelland, 2001; Verdonck & Tuerlinckx, 2014). Neural data have also been

used by researchers to investigate what decision-making processes may look like at

the level of neuron populations (Gold & Shadlen, 2001, 2002, 2007) and to choose

between cognitive models that cannot be discriminated from behavioral data alone,

where the neural data serves as a qualitative constraint on the cognitive model
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(Ditterich, 2010).

At a quantitative level, researchers have found that adjusting response

thresholds in sequential sampling models correlates with activation in brain re-

gions associated with caution (Forstmann et al., 2008, 2010). Advancements in

Bayesian methods have allowed researchers to build complex sequential sampling

models that are statistically constrained by both the behavioral and neural data

(Turner, Forstmann, et al., 2013; Turner, van Maanen, & Forstmann, 2015; van

Ravenzwaaij et al., 2016). Finally, researchers have directly mapped the firing rates

of the frontal eye field visual and movement neurons onto the evidence accumula-

tion processes of sequential sampling models (Purcell et al., 2010; Purcell, Schall,

Logan, & Palmeri, 2012; Cassey et al., 2014). Such direct links are dependent on

the assumption that the macro time scale of response times and sequential sampling

models map onto the micro time scale of firing patterns of large networks of neuron

populations, yet simulation studies have shown that explanations at the two different

time scales are in agreement (Zandbelt, Purcell, Palmeri, Logan, & Schall, 2014).

So far, cognitive psychologists have made many exciting developments in

both mathematical models and in neuroscience. This thesis demonstrated the utility

of the former approach. I have briefly outlined the type of research being conducted

in model-based cognitive neuroscience, which is a promising direction for mathe-

matical models of perceptual decision-making. In future we should see the increased

collaboration between scientists in mathematical psychology and neuroscience in an

attempt to develop a complete explanation of human behavior.
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Appendix: Chapter 2

A.0.1 Converging Evidence

Here we report fits from another model that can account for simple RT: the

log-normal race model (Heathcote & Love, 2012). The model cannot tell drift rates

from thresholds but can inform us whether there are rate/threshold and Ter effects.

In Table A.1, we can see that a model with rate/threshold and non-decision time

effects is preferred over a model with only one of the effects, which is in line with

our single-bound diffusion model results.

Table A.1: WAIC results for the log-normal race models.

Model Effective Parameters WAIC

a/v ∼ F & η ∼ 1 & ter ∼ 1 122.8 -18882.8

a/v ∼ 1 & η ∼ 1 & ter ∼ F 207.4 -18631.0

a/v ∼ F & η ∼ 1 & ter ∼ F 189.1 -19205.9

Note. Bold WAIC value indicates the preferred model.

F = Cognitive Load Manipulation

134
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A.0.2 Model Fitting Method

We estimated posterior distributions of parameter values using the Markov

Chain Monte Carlo (MCMC) method (see van Ravenzwaaij et al., 2015, for a tuto-

rial). To generate proposals for the MCMC algorithm we used differential evolution

(DE-MCMC; Ter Braak, 2006). DE-MCMC has been shown to efficiently estimate

parameters of hierarchical versions of models similar to the single-bound diffusion

model (e.g., Turner et al., 2015; Turner, Sederberg, Brown, & Steyvers, 2013). For all

model fits in the paper we ran the DE-MCMC algorithm with 40 chains. The start-

ing points of these chains were drawn from the following distributions: a ∼ N(1, .1),

v ∼ N(2, .2), η ∼ N(1, .1), and Ter ∼ N(.4, .04), where N(m, sd) indicates a normal

distribution with mean m and standard distribution sd.

Part of approximating posterior distributions via sampling is deciding when

convergence has been obtained, at which we are confident that samples represent the

posterior distribution. All samples prior to convergence are discarded. To decide

the point of convergence we both visually inspected the chains and discarded all

samples prior to the R̂ statistic being less than 1.01 (Gelman & Rubin, 1992). Upon

reaching the R̂ criterion, we drew 5000 additional samples for each chain. To save

memory during computing, and given the high auto-correlation within-chains, we

thinned the posterior by only keeping every 10th iteration. These 20000 (i.e. 40

chains × 500 iterations) samples constituted our posterior distribution estimates.

Each parameter for each subject was stochastically dependent on a group

level distribution, φθ, where the subscript θ denotes the subject level parameter. We

assumed that each group level distribution φθ had a truncated normal distribution,
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where φθ ∼ N(µ, σ) | (0,∞) (where the numbers after the | indicate the distribution

range). We set priors on the group level parameters where the mean of φθ had

a truncated Normal prior ∼ N(2, 2) | (0,∞), and the standard deviation had a

Gamma prior ∼ Γ(1.01, 1). For the Ter parameter, the group level mean had prior

∼ N(.4, .4) | (0, 1) and the standard deviation had a Gamma prior ∼ Γ(1.01, 1).

The subject level and group level parameters were estimated simultaneously. We

also conducted a parameter recovery exercise (Heathcote, Brown, & Wagenmakers,

2015), which is presented in the following section, that demonstrates that our best

fitting model’s parameters can be recovered.

A.0.3 Parameter Recovery

For each participant in each data set, we repeatedly generated new data

by simulating the single-bound diffusion with a sample from each participant’s joint

posterior distribution. We fit all of the simulated data sets with the single-bound

diffusion using the same model parameterization. Presented in Figure A.1 are scat-

terplots of generating and recovered parameter values.

A.0.4 Model Fit

To assess how well the 10 models account for empirical trends in the data, we

simulated data from each model. We sampled a set of parameter values from the joint

subject-level posterior distributions for each participant. With these parameters we

generated a data set the same size as the empirical data. This process was repeated

100 times, resulting in 100 simulated data sets. Figure A.2 summarizes the fit of the
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Figure A.1: Mean of subject-level posteriors of generating parameters values
plotted as a function of the mean of subject-level posteriors of recovered parameter
values.

10 models by superimposing each of the 100 simulated data sets on the empirical

data. RT are summarized by their 10%, 50%, and 90% quantile. From visual

inspection, all models appear to fit the data well.
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A.0.5 RT Hazard Functions

The behavior of the single-bound diffusion model with negative rates is

illustrated by its hazard function, a plot of the probability that a response will

occur in the next unit of time, at each time point, given that a response has not yet

occurred. Formally, hazard functions are defined as h(t) = f(t)/[1 − F (t)], where

f(t) and F (t) are the probability density function and cumulative density function,

respectively. In the diffusion model with a single positive rate the hazard function

increases to a plateau at longer times. A mixture or rates causes the hazard function

to increase then decrease for longer times. The tail of the hazard function remains

above zero when rates are strictly positive, but it decreases all the way to zero when

the mixture contains negative rates, consistent with failures to respond. In both

cases, including a mixture of rates makes the right tail of the RT distribution longer

(i.e., it increases the proportion of slow responses).

Ratcliff and Strayer (2014) suggested that drift variability is needed to ac-

count for hazard functions that increase initially but then fall to a low asymptotic.

In order to derive analytic likelihoods for our model we truncated the trial-to-trial

drift rate distribution to positive values (Desmond & Yang, 2011). Figure A.3 shows

that this truncation still allows our model to predict hazard functions with an initial

increase than a fall towards the tail of the distribution.

The plots show no evidence of the pronounced dip in the right tail of the

empirical hazard functions that is associated with substantial trial-to-trial rate vari-

ability, further confirming our selection of the simpler model with η = 0. The sharp
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increase in the tail of the observed hazard function is likely due to the difficulty in

approximating hazard functions from sparse data.
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Appendix: Chapter 3

B.0.1 Model Fitting Method

We use Bayesian methods to fit a hierarchical version of the LBA model

(Kruschke, 2011; Gelman, Carlin, Stern, & Rubin, 1995; Lee & Wagenmakers, 2013).

Two different statistical distributions were used for priors of the group level param-

eters. The first distribution was a truncated normal distribution, N(µ, σ) | (0, Inf),

with mean parameter µ, standard deviation parameter σ, lower bound and upper

bound. The second distribution we used was a gamma distribution, Γ(α, β), with

shape parameter α and rate parameter β. We assumed that parameters (θ) for each

subject came from the group level distribution φ, where φ ∼ N(µ, σ) | (0, Inf).

We set priors on the group level parameters for subject level parameters θ, so that

θµ ∼ N(2, 2) | (0, Inf), and θσ ∼ Γ(1.01, 1). For the β parameters, the prior on the

group level mean was ∼ N(0, .2) | (−Inf, Inf) and the prior on the group level SD

was ∼ Γ(1.01, 1).

141
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For hierarchical models, we cannot derive posteriors analytically, therefore

we approximated the posterior distributions via sampling. We used the differen-

tial evolution Markov Chain Monte Carlo algorithm (DE-MCMC; Ter Braak, 2006;

Turner, Sederberg, et al., 2013). For a tutorial on Markov Chain Monte Carlo see

van Ravenzwaaij et al. (2015). For all model fits in the paper we ran the DE-MCMC

algorithm with 48 chains in parallel. The first 2000 samples were considered part

of a burn-in period and were discarded. For the last 1000 samples of the burn-in

period, we ran with a migration algorithm to deal with any stuck chains (see Turner,

Sederberg, et al., 2013). After the burn-in period, 7500 additional samples were run

for each chain. This sample was considered enough to compensate for the autocor-

relation present within each chain. Thus, only every 15th sample was kept. This

resulted in 500 samples for each chain leaving 24000 (i.e. 48 chains × 500 iterations)

samples, which constituted our posterior distribution.

Starting points for the Markov chains were drawn from the following dis-

tributions: both v ∼ N(2, .2) | (0, Inf), all β ∼ N(.5, .05) | (0, Inf), A ∼ N(1, .1)

| (0, Inf), b ∼ N(1, .1) | (0, Inf), s ∼ N(1, .1) | (0, Inf), t0 ∼ N(3, .03) | (0, Inf).

The tuning parameters of the differential evolution proposal algorithm were set to

the values used in (Turner, Sederberg, et al., 2013). The MCMC chains generated

proposals separately for each participant’s parameters and also blocked the group-

level parameters in µ and σ pairs.

To assess convergence we visually inspected the chains. Figure B.1 demon-

strates an example of a single participant in which we deemed converged. To assess

convergence more objectively we also calculated R̂, which quantifies how much the

dispersion of the posteriors may reduce if we continue sampling (Gelman et al., 1995,
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p. 285). R̂ values closer to 1 indicate better convergence. R̂ was less than 1.1 for

all hyper parameter samples and the largest mean R̂ for any one participant was

1.014, which suggests that chains were converged. The minimum effective number of

independent draws (η̂eff) for hyper parameters, calculate as described by Gelman et

al. (1995, p. 286), was η̂eff = 19279.30 (of 24000), suggesting that we have estimated

our posterior distributions with high precision.
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Figure B.1: Trace plot of Markov chains for an individual subject. These chains
are considered converged with regards to visual inspection. Note that the trace
plot here contains 48 Markov chains, which have been run in parallel.
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B.0.2 Model Fit Results

To assess how well our model captures the empirical trends in the data, we

simulated data from our unequal drift LBA model, which was the best fitting model.

This process involved sampling a set of parameter values from the subject-level

posterior distributions for each participant. With these parameters we generated

a data set the same size as the empirical data. This process was repeated 100

times, resulting in 100 simulated data sets. Figure B.2 plots the empirical data and

superimpose all 100 of the simulated data sets.

The left panel of Figure B.2 shows the RT distributions for both the /A/ and

/a:/ responses across the 10 duration values. To summarize the RT distributions,

we present five quantile estimates (10%, 30%, 50%, 70% and 90%). The 10% and

90% quantiles represent the leading edge and tail of the distribution, respectively.

The 50%, or median, is a measure of central tendency. These plots are defective cu-

mulative distributions, meaning that the relative heights of the /A/ (red points) and

/a:/ (blue points) distributions show the proportion of /A/ and /a:/ responses, re-

spectively. The colored circles show the observed quantile estimates and the colored

crosses show the LBA’s predicted quantile estimates. Across all 10 duration values

we can see that the observed data and the predicted data are mostly in agreement.

However, for the 1st duration step for /a:/ responses and for the 10th duration step

for /A/ responses, the model misses the 90% quantile. Specifically, the tail of the em-

pirical data extends out further than the model predicts. Note that when responses

are rare (as is for 1st duration /a:/ responses and 10th duration /A/ responses), the

high quantiles are often not captured well by response time models.
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Figure B.2: Predicted and empirical RTs for each duration step (left panel) and
each spectral quality step (right panel). The circles represent the empirical data
and the crosses represent the posterior predicted data. The red points are /A/
responses and the blue points are /a:/ responses. Numbers 1 though to 10 at
the top of each plot represent the condition level as presented in Table 1 in the
original paper.
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The right panel of Figure B.2 shows RT distributions for both the /A/ and

/a:/ responses across the 10 spectral qualities. Again, the observed data and the

predicted data are mostly in agreement. The LBA captures response times well,

but produces some misses to the response proportions for the 3rd, 4th, 5th, 7th and

8th spectral qualities. Overall, the model fits well given that only 10 parameters are

estimated to capture effects of categorization and RTs in 200 conditions.

B.0.3 Parameter recovery check

For each participant in each data set, we repeatedly generated new data

by simulating the LBA with a sample from each participant’s joint posterior distri-

bution. We fit all of the simulated data sets with the LBA using the same model

parameterization. Presented in Figure B.3 is the deviation between the posterior dis-

tributions used to generate simulated data and the posterior distributions recovered

in the fits. All of the histograms are centered on zero (red vertical line) suggesting

that we have recovered our model.
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recovery and little estimation bias.
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Appendix: Chapter 4

C.0.1 REM–LD Predictions

To derive predictions from REM–LD we use equations from Wagenmakers

et al. (2004). The probe and memory traces all consisted of 30 features. We also

assume that the probe is compared to 100 lexical traces in memory. The probability

of a feature match when encoding the same item was .85 for high frequency words,

.75 for low frequency words, and .65 for low frequency words. The probability of a

feature match when encoding a different item was .5 for pseudo-words and .35 for

random letter strings. The rate of increase in probability of activation was .0025.

We calculated the log posterior odds ratio for 1000 trials at four different

deadlines (250ms, 500ms, 750ms, 1000ms). The deadline was when we told the

system to respond and it reflects the nature of evidence at different response times.

The system had a minimum processing time of 250ms, during which no comparisons

between the probe and trace are made.

148
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C.0.2 Model Parameterization

The diffusion model parameterization for each data set is shown in Table

C.1. The parameterization are for the unequal model, which had a separate η

for each lexical stimulus. The equal model had the same parameterization as the

unequal model, but only included one η for all word frequency conditions.

Table C.1: Data sets that were fit with the diffusion model.

Data Set Source Parameterization

1 Wagenmakers et al. (2008) Exp1. a ∼ E & v ∼ W*E & z ∼ E & sz ∼ E & η ∼ W & ter ∼ E & st ∼ E

2 Wagenmakers et al. (2008) Exp.2 a ∼ 1 & v ∼ W & z ∼ P & sz ∼ 1 & η ∼ W & ter ∼ W & st ∼ 1

3 Ratcliff et al. (2004) Exp.1 a ∼ 1 & v ∼ W & z ∼ P & sz ∼ 1 & η ∼ W & ter ∼ W & st ∼ 1

4 Ratcliff et al. (2004) Exp.2 a ∼ 1 & v ∼ W & z ∼ P & sz ∼ 1 & η ∼ W & ter ∼ W & st ∼ 1

5 Ratcliff et al. (2004) Exp.4 a ∼ 1 & v ∼ W & z ∼ P & sz ∼ 1 & η ∼ W & ter ∼ W & st ∼ 1

E = Speed or Accuracy Emphasis

P = Word/Non-Word Proportion Manipulation

W = Word Frequency Manipulation

C.0.3 Model Fitting Method

We use Bayesian methods to fit an hierarchical version of the diffusion model

(Kruschke, 2011; Gelman et al., 1995; Lee & Wagenmakers, 2013). Two different

statistical distributions were used for priors of the group level parameters. The first

distribution was a truncated normal distribution, N(µ, σ) | (lower, upper), with

mean parameter µ, standard deviation parameter σ, lower bound and upper bound.

The second distribution we used was a gamma distribution, Γ(α, β), with shape

parameter α and rate parameter β. We assumed that parameters (θ) for each subject

came from the group level distribution φ, where φ ∼ N(µ, σ) | (0, Inf). We set

the following priors on the group level parameters: σ for all diffusion parameters

was distributed as ∼ Γ(1.01, 1); aµ ∼ N(2, 2) | (0, 10); vµ ∼ N(2, 2) | (−10, 10);
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zµ ∼ N(.5, .5) | (0, 1); szµ ∼ N(.1, .1) | (0, 1); Terµ ∼ N(.3, .3) | (0, 1); stµ ∼ N(.1, .1)

| (0, 1); ηµ ∼ N(1, 1) | (0, 10).

For hierarchical models, we cannot derive posteriors analytically, therefore

we approximated the posterior distributions via sampling. We used the differen-

tial evolution Markov Chain Monte Carlo algorithm (DE-MCMC; Ter Braak, 2006;

Turner, Sederberg, et al., 2013). For a tutorial on Markov Chain Monte Carlo see

van Ravenzwaaij et al. (2015). For all model fits in the paper we ran the DE-MCMC

algorithm with 48 chains in parallel. The first 2000 samples were considered part of

a burn-in period and were discarded. For these first 2000 samples we ran with a mi-

gration algorithm to deal with any stuck chains (see Turner, Sederberg, et al., 2013).

After the burn-in period, 5000 additional samples were run for each chain. This sam-

ple was considered enough to compensate for the autocorrelation present within each

chain. Thus, only every 10th sample was kept. This resulted in 500 samples for each

chain leaving 24000 (i.e. 48 chains × 500 iterations) samples, which constituted our

posterior distribution. Starting points for the Markov chains were drawn from the

group level prior distributions. The tuning parameters of the differential evolution

proposal algorithm were set to the values used in (Turner, Sederberg, et al., 2013).

The MCMC chains generated proposals separately for each participant’s parameters

and also blocked the group-level parameters in µ and σ pairs.

To assess convergence we visually inspected the chains and also calculated

R̂, which quantifies how much the dispersion of the posteriors may reduce if we

continue sampling (Gelman et al., 1995, p. 285). R̂ values closer to 1 indicate better

convergence. R̂ was less than 1.1 for all hyper parameter samples, which suggests

that chains were converged.
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C.0.4 Model Recovery

We ensure that the trends in our parameter estimates are not the product

of estimation bias (see Starns & Ratcliff, 2014). To do this we simulate data from

the diffusion model with only 1 η parameter and fit this data with the model with

separate η parameters for each word frequency condition.

The η parameter of the diffusion model is estimated from subtle effects in

the empirical data. Therefore, it is important to check whether any systematic

changes we observe in η are not due to our fitting routine – i.e., estimation bias. To

check for estimation bias we generate a new data set for each participant. To do

this we generating data from a set of parameters sampled from their corresponding

posterior distribution of the equal variance diffusion model. Each of these data sets

are then fit using the unequal diffusion model. Because the data are generated from

the equal variance model, any systematic differences in the η parameters for the

unequal model fit to this data is due to estimation bias.

In Figure C.1 we display the actual generating η values minus the recovered

η values. The values are the group level mean posterior estimates of η. Distribu-

tions centered at zero indicate an accurate recovery and suggests that there is no

estimation bias. There was an accurate recovery for all data sets, which is indicated

by the 95% credible intervals of the posteriors overlapping with zero.
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Figure C.1: Deviation between the η values used to generate simulated data and
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